optimization_test.py 3.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

thomwolf's avatar
thomwolf committed
21
22
import torch

thomwolf's avatar
thomwolf committed
23
24
25
from pytorch_transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule,
                                  WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule)

lukovnikov's avatar
lukovnikov committed
26
import numpy as np
27

lukovnikov's avatar
lukovnikov committed
28

29
30
31
32
33
34
35
class OptimizationTest(unittest.TestCase):

    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
36
    def test_adam_w(self):
37
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
38
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
39
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
40
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
41
        optimizer = AdamW(params=[w], lr=2e-1,
thomwolf's avatar
thomwolf committed
42
                                          weight_decay=0.0,
thomwolf's avatar
thomwolf committed
43
                                          max_grad_norm=-1)
44
        for _ in range(100):
thomwolf's avatar
thomwolf committed
45
            loss = criterion(w, target)
46
47
            loss.backward()
            optimizer.step()
thomwolf's avatar
thomwolf committed
48
49
            w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
            w.grad.zero_()
50
51
52
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)


lukovnikov's avatar
lukovnikov committed
53
class ScheduleInitTest(unittest.TestCase):
thomwolf's avatar
thomwolf committed
54
    def test_sched_init(self):
lukovnikov's avatar
lukovnikov committed
55
        m = torch.nn.Linear(50, 50)
thomwolf's avatar
thomwolf committed
56
        optim = AdamW(m.parameters(), lr=0.001, warmup=.1, t_total=1000, schedule=None)
lukovnikov's avatar
lukovnikov committed
57
        self.assertTrue(isinstance(optim.param_groups[0]["schedule"], ConstantLR))
thomwolf's avatar
thomwolf committed
58
        optim = AdamW(m.parameters(), lr=0.001, warmup=.1, t_total=1000, schedule="none")
lukovnikov's avatar
lukovnikov committed
59
        self.assertTrue(isinstance(optim.param_groups[0]["schedule"], ConstantLR))
thomwolf's avatar
thomwolf committed
60
        optim = AdamW(m.parameters(), lr=0.001, warmup=.01, t_total=1000)
lukovnikov's avatar
lukovnikov committed
61
62
63
64
        self.assertTrue(isinstance(optim.param_groups[0]["schedule"], WarmupLinearSchedule))
        # shouldn't fail


lukovnikov's avatar
lukovnikov committed
65
66
class WarmupCosineWithRestartsTest(unittest.TestCase):
    def test_it(self):
lukovnikov's avatar
lukovnikov committed
67
        m = WarmupCosineWithWarmupRestartsSchedule(warmup=0.05, t_total=1000., cycles=5)
lukovnikov's avatar
lukovnikov committed
68
69
        x = np.arange(0, 1000)
        y = [m.get_lr(xe) for xe in x]
lukovnikov's avatar
lukovnikov committed
70
71
72
73
74
75
76
        y = np.asarray(y)
        expected_zeros = y[[0, 200, 400, 600, 800]]
        print(expected_zeros)
        expected_ones = y[[50, 250, 450, 650, 850]]
        print(expected_ones)
        self.assertTrue(np.allclose(expected_ones, 1))
        self.assertTrue(np.allclose(expected_zeros, 0))
lukovnikov's avatar
lukovnikov committed
77
78


79
80
if __name__ == "__main__":
    unittest.main()