test_modeling_rag.py 44.3 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import gc
Ola Piktus's avatar
Ola Piktus committed
18
19
20
21
22
23
24
25
26
import json
import os
import shutil
import tempfile
import unittest
from unittest.mock import patch

import numpy as np

27
from transformers import BartTokenizer, T5Tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
Shamane Siri's avatar
Shamane Siri committed
29
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
30
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
Lysandre Debut's avatar
Lysandre Debut committed
31
from transformers.testing_utils import (
Yih-Dar's avatar
Yih-Dar committed
32
    get_tests_dir,
Lysandre Debut's avatar
Lysandre Debut committed
33
34
35
    require_sentencepiece,
    require_tokenizers,
    require_torch,
36
    require_torch_non_multi_gpu,
Lysandre Debut's avatar
Lysandre Debut committed
37
38
39
    slow,
    torch_device,
)
40
from transformers.utils import cached_property, is_datasets_available, is_faiss_available, is_torch_available
Ola Piktus's avatar
Ola Piktus committed
41

42
43
44
from ..bart.test_modeling_bart import BartModelTester
from ..dpr.test_modeling_dpr import DPRModelTester
from ..t5.test_modeling_t5 import T5ModelTester
Ola Piktus's avatar
Ola Piktus committed
45
46
47
48


TOLERANCE = 1e-3

Yih-Dar's avatar
Yih-Dar committed
49
T5_SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
Ola Piktus's avatar
Ola Piktus committed
50
51
52
53
54
55
56
57
58
if is_torch_available() and is_datasets_available() and is_faiss_available():
    import torch
    from datasets import Dataset

    import faiss
    from transformers import (
        AutoConfig,
        AutoModel,
        AutoModelForSeq2SeqLM,
Shamane Siri's avatar
Shamane Siri committed
59
        DPRContextEncoder,
Ola Piktus's avatar
Ola Piktus committed
60
61
62
63
64
        RagConfig,
        RagModel,
        RagRetriever,
        RagSequenceForGeneration,
        RagTokenForGeneration,
65
        RagTokenizer,
Ola Piktus's avatar
Ola Piktus committed
66
67
68
69
70
71
72
73
74
75
76
77
78
    )
    from transformers.modeling_outputs import BaseModelOutput


def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
79
        msg = f"{a} != {b}"
Ola Piktus's avatar
Ola Piktus committed
80
81
82
83
84
85
86
87
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def require_retrieval(test_case):
    """
    Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with
Stas Bekman's avatar
Stas Bekman committed
88
    [`RagRetriever`].
Ola Piktus's avatar
Ola Piktus committed
89
90
91
92
93

    These tests are skipped when respective libraries are not installed.

    """
    if not (is_torch_available() and is_datasets_available() and is_faiss_available()):
94
        test_case = unittest.skip("test requires PyTorch, datasets and faiss")(test_case)
Ola Piktus's avatar
Ola Piktus committed
95
96
97
98
99
    return test_case


@require_torch
@require_retrieval
100
@require_sentencepiece
Ola Piktus's avatar
Ola Piktus committed
101
102
103
104
105
106
107
108
109
class RagTestMixin:

    all_model_classes = (
        (RagModel, RagTokenForGeneration, RagSequenceForGeneration)
        if is_torch_available() and is_datasets_available() and is_faiss_available()
        else ()
    )

    retrieval_vector_size = 32
110
    n_docs = 3
Ola Piktus's avatar
Ola Piktus committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    max_combined_length = 16

    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

        t5_tokenizer = T5Tokenizer(T5_SAMPLE_VOCAB)
        t5_tokenizer_path = os.path.join(self.tmpdirname, "t5_tokenizer")
        t5_tokenizer.save_pretrained(t5_tokenizer_path)

    @cached_property
    def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

Shamane Siri's avatar
Shamane Siri committed
184
185
186
187
    @cached_property
    def dpr_ctx_encoder_tokenizer(self) -> DPRContextEncoderTokenizer:
        return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

Ola Piktus's avatar
Ola Piktus committed
188
189
190
191
192
193
194
195
196
197
198
    @cached_property
    def bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    @cached_property
    def t5_tokenizer(self) -> BartTokenizer:
        return T5Tokenizer.from_pretrained(os.path.join(self.tmpdirname, "t5_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

199
200
201
202
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

Ola Piktus's avatar
Ola Piktus committed
203
204
205
    def get_retriever(self, config):
        dataset = Dataset.from_dict(
            {
206
207
208
209
210
211
212
213
                "id": ["0", "1", "3"],
                "text": ["foo", "bar", "qux"],
                "title": ["Foo", "Bar", "Qux"],
                "embeddings": [
                    np.ones(self.retrieval_vector_size),
                    2 * np.ones(self.retrieval_vector_size),
                    3 * np.ones(self.retrieval_vector_size),
                ],
Ola Piktus's avatar
Ola Piktus committed
214
215
216
217
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
        tokenizer = self.bart_tokenizer if config.generator.model_type == "bart" else self.t5_tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
218
        with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
Ola Piktus's avatar
Ola Piktus committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
            mock_load_dataset.return_value = dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.dpr_tokenizer,
                generator_tokenizer=tokenizer,
            )
        return retriever

    def check_model_with_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

Shamane Siri's avatar
Shamane Siri committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    def check_model_with_end2end_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        context_encoder_tokenizer = self.dpr_ctx_encoder_tokenizer
        dpr_context_encoder = DPRContextEncoder(config.question_encoder)  # dpr is a twin tower

        retriever = self.get_retriever(config)
        retriever.set_ctx_encoder_tokenizer(context_encoder_tokenizer)  # setting the ctx_encoder_tokenizer.

        for model_class in [RagTokenForGeneration, RagSequenceForGeneration]:
            model = model_class(config, retriever=retriever)
            model.set_context_encoder_for_training(dpr_context_encoder)  # set the context_encoder for training
            model.to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    def check_model_generate_from_context_input_ids(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model.generate(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                do_deduplication=True,
            )

            self.assertIsNotNone(outputs)

Ola Piktus's avatar
Ola Piktus committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    def check_model_generate(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes[1:]:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model.generate(
                input_ids=input_ids,
                num_beams=2,
                num_return_sequences=2,
                decoder_start_token_id=config.generator.eos_token_id,
            )

            self.assertIsNotNone(outputs)

    def check_model_without_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    def check_model_custom_n_docs(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, n_docs, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
                n_docs=n_docs,
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                n_docs=n_docs,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], n_docs))

    def check_model_with_mismatch_n_docs_value(
        self,
        config,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask,
        retriever_n_docs,
        generator_n_docs,
        **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
                n_docs=retriever_n_docs,
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            self.assertRaises(
                AssertionError,
                model.__call__,
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                n_docs=generator_n_docs,
            )

Ola Piktus's avatar
Ola Piktus committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    def check_model_with_encoder_outputs(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            encoder_outputs = BaseModelOutput(outputs.generator_enc_last_hidden_state)

            # run only generator
            outputs = model(
                encoder_outputs=encoder_outputs,
                doc_scores=outputs.doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

    def test_model_with_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_retriever(**inputs_dict)
Shamane Siri's avatar
Shamane Siri committed
590
591
592
593

    def test_model_with_end2end_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_end2end_retriever(**inputs_dict)
Ola Piktus's avatar
Ola Piktus committed
594
595
596
597
598
599
600
601
602
603
604
605
606

    def test_model_without_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_without_retriever(**inputs_dict)

    def test_model_with_encoder_outputs(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_encoder_outputs(**inputs_dict)

    def test_model_generate(self):
        inputs_dict = self.config_and_inputs
        self.check_model_generate(**inputs_dict)

607
608
609
610
611
612
613
614
615
616
617
    def test_model_with_custom_n_docs(self):
        inputs_dict = self.config_and_inputs
        inputs_dict["n_docs"] = 1
        self.check_model_custom_n_docs(**inputs_dict)

    def test_model_with_mismatch_n_docs_value(self):
        inputs_dict = self.config_and_inputs
        inputs_dict["retriever_n_docs"] = 3
        inputs_dict["generator_n_docs"] = 2
        self.check_model_with_mismatch_n_docs_value(**inputs_dict)

Ola Piktus's avatar
Ola Piktus committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

@require_torch
@require_retrieval
class RagDPRBartTest(RagTestMixin, unittest.TestCase):
    @cached_property
    def config_and_inputs(self):
        question_encoder_tester = DPRModelTester(self)
        dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs()
        generator_tester = BartModelTester(self)
        bart_config_and_inputs = generator_tester.prepare_config_and_inputs_for_common()

        (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs
        (generator_config, bart_inputs_dict) = bart_config_and_inputs
        decoder_input_ids, decoder_attention_mask = bart_inputs_dict["input_ids"], bart_inputs_dict["attention_mask"]

        config = RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            n_docs=self.n_docs,
            retrieval_vector_size=self.retrieval_vector_size,
            max_combined_length=self.max_combined_length,
        )

        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }


@require_torch
@require_retrieval
class RagDPRT5Test(RagTestMixin, unittest.TestCase):
    @cached_property
    def config_and_inputs(self):
        question_encoder_tester = DPRModelTester(self)
        dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs()
657
        generator_tester = T5ModelTester(self, vocab_size=1100)
Ola Piktus's avatar
Ola Piktus committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
        t5_config_and_inputs = generator_tester.prepare_config_and_inputs()

        (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs
        (generator_config, _, decoder_input_ids, _, decoder_attention_mask, _) = t5_config_and_inputs
        config = RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            n_docs=self.n_docs,
            retrieval_vector_size=self.retrieval_vector_size,
            max_combined_length=self.max_combined_length,
        )

        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }


@require_torch
@require_retrieval
681
682
@require_sentencepiece
@require_tokenizers
683
@require_torch_non_multi_gpu
Ola Piktus's avatar
Ola Piktus committed
684
class RagModelIntegrationTests(unittest.TestCase):
685
686
687
688
689
690
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

Ola Piktus's avatar
Ola Piktus committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
    @cached_property
    def sequence_model(self):
        return (
            RagSequenceForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn"
            )
            .to(torch_device)
            .eval()
        )

    @cached_property
    def token_model(self):
        return (
            RagTokenForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn"
            )
            .to(torch_device)
            .eval()
        )

    def get_rag_config(self):
        question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn")
        return RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            bos_token_id=0,
            decoder_start_token_id=2,
            eos_token_id=2,
            is_encoder_decoder=True,
            pad_token_id=1,
            vocab_size=50264,
            title_sep=" / ",
            doc_sep=" // ",
            n_docs=5,
            max_combined_length=300,
            dataset="wiki_dpr",
            dataset_split="train",
            index_name="exact",
            index_path=None,
            use_dummy_dataset=True,
            retrieval_vector_size=768,
            retrieval_batch_size=8,
        )

    @slow
    def test_rag_sequence_inference(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        rag_sequence = self.sequence_model
        rag_sequence.set_retriever(rag_retriever)

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with torch.no_grad():
            output = rag_sequence(
                input_ids,
                labels=decoder_input_ids,
            )

        expected_shape = torch.Size([5, 5, 50264])
        self.assertEqual(output.logits.shape, expected_shape)

        expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device)
        _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE)

772
        expected_loss = torch.tensor([36.7368]).to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE)

    @slow
    def test_rag_token_inference(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        rag_token = self.token_model
        rag_token.set_retriever(rag_retriever)

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with torch.no_grad():
            output = rag_token(
                input_ids,
                labels=decoder_input_ids,
            )

        expected_shape = torch.Size([5, 5, 50264])
        self.assertEqual(output.logits.shape, expected_shape)

        expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device)
        _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE)

811
        expected_loss = torch.tensor([36.3557]).to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE)

    @slow
    def test_rag_token_generate_beam(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        rag_token = self.token_model
        rag_token.set_retriever(rag_retriever)

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids

        input_ids = input_ids.to(torch_device)

        output_ids = rag_token.generate(
            input_ids,
            decoder_start_token_id=rag_token.generator.config.decoder_start_token_id,
            num_beams=2,
            num_return_sequences=2,
        )
        # sequence generate test
        output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
        output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True)

        # Expected outputs as given by model at integration time.
847
848
        EXPECTED_OUTPUT_TEXT_1 = "\"She's My Kind of Girl"
        EXPECTED_OUTPUT_TEXT_2 = "\"She's My Kind of Love"
Ola Piktus's avatar
Ola Piktus committed
849
850
851
852
853

        self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1)
        self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2)

    @slow
854
    def test_rag_sequence_generate_beam(self):
Ola Piktus's avatar
Ola Piktus committed
855
856
857
858
859
860
861
862
863
864
865
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

866
867
        rag_sequence = self.sequence_model
        rag_sequence.set_retriever(rag_retriever)
Ola Piktus's avatar
Ola Piktus committed
868

869
870
871
        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
Ola Piktus's avatar
Ola Piktus committed
872

873
        input_ids = input_ids.to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
874

875
        output_ids = rag_sequence.generate(
Ola Piktus's avatar
Ola Piktus committed
876
            input_ids,
877
            decoder_start_token_id=rag_sequence.generator.config.decoder_start_token_id,
878
879
            num_beams=2,
            num_return_sequences=2,
Ola Piktus's avatar
Ola Piktus committed
880
881
882
883
884
885
        )
        # sequence generate test
        output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
        output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True)

        # Expected outputs as given by model at integration time.
886
887
        EXPECTED_OUTPUT_TEXT_1 = """\"She's My Kind of Girl\" was released through Epic Records in Japan in March 1972, giving the duo a Top 10 hit. Two more singles were released in Japan, \"En Carousel\" and \"Love Has Its Ways\" Ulvaeus and Andersson persevered with their songwriting and experimented with new sounds and vocal arrangements."""
        EXPECTED_OUTPUT_TEXT_2 = """In September 2018, Bj枚rn Ulvaeus revealed that the two new songs, \"I Still Have Faith In You\" and \"Don't Shut Me Down\", would be released no earlier than March 2019. The two new tracks will feature in a TV special set to air later in the year."""
Ola Piktus's avatar
Ola Piktus committed
888
889
890

        self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1)
        self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2)
891
892
893
894
895
896
897
898
899
900
901
902
903

    @property
    def test_data_questions(self):
        return [
            "who got the first nobel prize in physics",
            "when is the next deadpool movie being released",
            "which mode is used for short wave broadcast service",
            "who is the owner of reading football club",
            "when is the next scandal episode coming out",
            "when is the last time the philadelphia won the superbowl",
            "what is the most current adobe flash player version",
            "how many episodes are there in dragon ball z",
        ]
Ola Piktus's avatar
Ola Piktus committed
904
905
906

    @slow
    def test_rag_sequence_generate_batch(self):
907
908
909
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
        retriever = RagRetriever.from_pretrained(
            "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
Ola Piktus's avatar
Ola Piktus committed
910
        )
911
        rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to(
912
            torch_device
Ola Piktus's avatar
Ola Piktus committed
913
914
        )

915
916
        input_dict = tokenizer(
            self.test_data_questions,
Ola Piktus's avatar
Ola Piktus committed
917
918
919
            return_tensors="pt",
            padding=True,
            truncation=True,
920
        )
Ola Piktus's avatar
Ola Piktus committed
921

922
923
        input_ids = input_dict.input_ids.to(torch_device)
        attention_mask = input_dict.attention_mask.to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
924
925
926

        output_ids = rag_sequence.generate(
            input_ids,
927
            attention_mask=attention_mask,
Ola Piktus's avatar
Ola Piktus committed
928
929
        )

930
931
932
933
934
935
936
937
938
939
940
941
942
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        EXPECTED_OUTPUTS = [
            " albert einstein",
            " june 22, 2018",
            " amplitude modulation",
            " tim besley ( chairman )",
            " june 20, 2018",
            " 1980",
            " 7.0",
            " 8",
        ]
        self.assertListEqual(outputs, EXPECTED_OUTPUTS)
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992

    @slow
    def test_rag_sequence_generate_batch_from_context_input_ids(self):
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
        retriever = RagRetriever.from_pretrained(
            "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
        )
        rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to(
            torch_device
        )

        input_dict = tokenizer(
            self.test_data_questions,
            return_tensors="pt",
            padding=True,
            truncation=True,
        )

        input_ids = input_dict.input_ids.to(torch_device)
        attention_mask = input_dict.attention_mask.to(torch_device)

        question_hidden_states = rag_sequence.question_encoder(input_ids, attention_mask=attention_mask)[0]
        docs_dict = retriever(
            input_ids.cpu().detach().numpy(), question_hidden_states.cpu().detach().numpy(), return_tensors="pt"
        )
        doc_scores = torch.bmm(
            question_hidden_states.unsqueeze(1),
            docs_dict["retrieved_doc_embeds"].to(torch_device).float().transpose(1, 2),
        ).squeeze(1)

        output_ids = rag_sequence.generate(
            context_input_ids=docs_dict["context_input_ids"].to(torch_device),
            context_attention_mask=docs_dict["context_attention_mask"].to(torch_device),
            doc_scores=doc_scores.to(torch_device),
            do_deduplication=True,
        )

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        EXPECTED_OUTPUTS = [
            " albert einstein",
            " june 22, 2018",
            " amplitude modulation",
            " tim besley ( chairman )",
            " june 20, 2018",
            " 1980",
            " 7.0",
            " 8",
        ]
        self.assertListEqual(outputs, EXPECTED_OUTPUTS)
Ola Piktus's avatar
Ola Piktus committed
993
994

    @slow
995
996
997
998
999
    def test_rag_token_generate_batch(self):
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
        retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
        rag_token = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever).to(
            torch_device
Ola Piktus's avatar
Ola Piktus committed
1000
1001
        )

Patrick von Platen's avatar
Patrick von Platen committed
1002
1003
1004
        if torch_device == "cuda":
            rag_token.half()

1005
1006
1007
1008
1009
1010
        input_dict = tokenizer(
            self.test_data_questions,
            return_tensors="pt",
            padding=True,
            truncation=True,
        )
Ola Piktus's avatar
Ola Piktus committed
1011

1012
1013
        input_ids = input_dict.input_ids.to(torch_device)
        attention_mask = input_dict.attention_mask.to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
1014
1015
1016

        output_ids = rag_token.generate(
            input_ids,
1017
            attention_mask=attention_mask,
Ola Piktus's avatar
Ola Piktus committed
1018
1019
        )

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        EXPECTED_OUTPUTS = [
            " albert einstein",
            " september 22, 2017",
            " amplitude modulation",
            " stefan persson",
            " april 20, 2018",
            " the 1970s",
            " 7.1. 2",
            " 13",
        ]
        self.assertListEqual(outputs, EXPECTED_OUTPUTS)
Ola Piktus's avatar
Ola Piktus committed
1033
1034
1035
1036
1037


@require_torch
@require_retrieval
class RagModelSaveLoadTests(unittest.TestCase):
1038
1039
1040
1041
1042
1043
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

Ola Piktus's avatar
Ola Piktus committed
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
    def get_rag_config(self):
        question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn")
        return RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            bos_token_id=0,
            decoder_start_token_id=2,
            eos_token_id=2,
            is_encoder_decoder=True,
            pad_token_id=1,
            vocab_size=50264,
            title_sep=" / ",
            doc_sep=" // ",
            n_docs=5,
            max_combined_length=300,
            dataset="wiki_dpr",
            dataset_split="train",
            index_name="exact",
            index_path=None,
            use_dummy_dataset=True,
            retrieval_vector_size=768,
            retrieval_batch_size=8,
        )

    @slow
    def test_rag_sequence_from_pretrained(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            rag_sequence = RagSequenceForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base",
                "facebook/bart-large-cnn",
                retriever=rag_retriever,
                config=rag_config,
            ).to(torch_device)
            # check that the from pretrained methods work
            rag_sequence.save_pretrained(tmp_dirname)
            rag_sequence.from_pretrained(tmp_dirname, retriever=rag_retriever)
            rag_sequence.to(torch_device)

            with torch.no_grad():
                output = rag_sequence(
                    input_ids,
                    labels=decoder_input_ids,
                )

            loss_pretrained = output.loss
            del rag_sequence

        question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
        rag_sequence = RagSequenceForGeneration(
            config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever
        )
        rag_sequence.to(torch_device)

        with torch.no_grad():
            output = rag_sequence(
                input_ids,
                labels=decoder_input_ids,
            )

        loss_init = output.loss

        self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)

    @slow
    def test_rag_token_from_pretrained(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            rag_token = RagTokenForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base",
                "facebook/bart-large-cnn",
                retriever=rag_retriever,
                config=rag_config,
1155
1156
                question_encoder_max_length=200,
                generator_max_length=200,
Ola Piktus's avatar
Ola Piktus committed
1157
1158
1159
1160
1161
1162
            ).to(torch_device)
            # check that the from pretrained methods work
            rag_token.save_pretrained(tmp_dirname)
            rag_token.from_pretrained(tmp_dirname, retriever=rag_retriever)
            rag_token.to(torch_device)

1163
1164
1165
            self.assertTrue(rag_token.question_encoder.config.max_length == 200)
            self.assertTrue(rag_token.generator.config.max_length == 200)

Ola Piktus's avatar
Ola Piktus committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
            with torch.no_grad():
                output = rag_token(
                    input_ids,
                    labels=decoder_input_ids,
                )

            loss_pretrained = output.loss
            del rag_token

        question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
        rag_token = RagTokenForGeneration(
            config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever
        )
        rag_token.to(torch_device)

        with torch.no_grad():
            output = rag_token(
                input_ids,
                labels=decoder_input_ids,
            )

        loss_init = output.loss

        self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)