run_lm_finetuning.py 30.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26
27

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
28
import pickle
29
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
30
31
import re
import shutil
32
33
34

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
35
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
36
from torch.utils.data.distributed import DistributedSampler
37
38
39
40
41
42

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

43
44
from tqdm import tqdm, trange

45
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
46
47
48
                                  BertConfig, BertForMaskedLM, BertTokenizer,
                                  GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
                                  OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
49
                                  RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
maxvidal's avatar
maxvidal committed
50
51
                                  DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer,
                                  CamembertConfig, CamembertForMaskedLM, CamembertTokenizer)
52

53

54
logger = logging.getLogger(__name__)
55
56
57


MODEL_CLASSES = {
58
    'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
59
    'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
60
    'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
61
    'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
maxvidal's avatar
maxvidal committed
62
63
    'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    'camembert': (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer)
64
65
66
}


67
class TextDataset(Dataset):
68
    def __init__(self, tokenizer, args, file_path='train', block_size=512):
69
70
        assert os.path.isfile(file_path)
        directory, filename = os.path.split(file_path)
71
        cached_features_file = os.path.join(directory, args.model_name_or_path + '_cached_lm_' + str(block_size) + '_' + filename)
72

Lysandre's avatar
Lysandre committed
73
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
74
75
76
77
78
79
80
81
82
83
84
            logger.info("Loading features from cached file %s", cached_features_file)
            with open(cached_features_file, 'rb') as handle:
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
85

mgrankin's avatar
mgrankin committed
86
            for i in range(0, len(tokenized_text)-block_size+1, block_size): # Truncate in block of block_size
87
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i:i+block_size]))
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
            with open(cached_features_file, 'wb') as handle:
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return torch.tensor(self.examples[item])


def load_and_cache_examples(args, tokenizer, evaluate=False):
104
    dataset = TextDataset(tokenizer, args, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
105
106
107
    return dataset


108
109
110
111
112
113
114
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

115

116
117
118
119
120
121
122
123
def _rotate_checkpoints(args, checkpoint_prefix, use_mtime=False):
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, '{}-*'.format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
124
125
126
    if len(glob_checkpoints) <= args.save_total_limit:
        return

127
    ordering_and_checkpoint_path = []
jinoobaek-qz's avatar
jinoobaek-qz committed
128
    for path in glob_checkpoints:
129
130
131
132
133
134
135
136
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
            regex_match = re.match('.*{}-([0-9]+)'.format(checkpoint_prefix), path)
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
137
138
139
140
141
142
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
143
144


145
def mask_tokens(inputs, tokenizer, args):
146
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
147
    labels = inputs.clone()
148
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
149
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
150
151
    special_tokens_mask = [tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()]
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
152
    masked_indices = torch.bernoulli(probability_matrix).bool()
LysandreJik's avatar
LysandreJik committed
153
    labels[~masked_indices] = -100  # We only compute loss on masked tokens
154
155

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
156
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
157
158
159
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
160
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
161
162
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
163

164
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
165
    return inputs, labels
166

167

168
169
170
171
172
173
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
174
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
175
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
190
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
191
192
193
194
195
196
197

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(args.model_name_or_path, 'optimizer.pt')) and os.path.isfile(os.path.join(args.model_name_or_path, 'scheduler.pt')):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'optimizer.pt')))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'scheduler.pt')))

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split('-')[-1].split('/')[0])
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

240
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
241
242
243
244

    model_to_resize = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
    model_to_resize.resize_token_embeddings(len(tokenizer))

245
    model.zero_grad()
246
    train_iterator = trange(epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
247
    set_seed(args)  # Added here for reproducibility (even between python 2 and 3)
Bilal Khan's avatar
Bilal Khan committed
248
    for _ in train_iterator:
249
250
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
251
252
253
254
255
256
            
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

257
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
258
259
260
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
261
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
262
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
263
264

            if args.n_gpu > 1:
265
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
266
267
268
269
270
271
272
273
274
275
276
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
277
278
279
280
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
281
                optimizer.step()
282
                scheduler.step()  # Update learning rate schedule
283
284
285
286
287
288
289
290
291
292
293
294
295
296
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
297
                    checkpoint_prefix = 'checkpoint'
298
                    # Save model checkpoint
299
                    output_dir = os.path.join(args.output_dir, '{}-{}'.format(checkpoint_prefix, global_step))
300
301
302
303
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
304
305
                    tokenizer.save_pretrained(output_dir)

306
307
308
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

309
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
310

311
312
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, 'optimizer.pt'))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, 'scheduler.pt'))
Bilal Khan's avatar
Bilal Khan committed
313
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
339
    eval_sampler = SequentialSampler(eval_dataset)
340
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
341

ronakice's avatar
ronakice committed
342
343
344
345
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

346
347
348
349
350
351
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
352
353
    model.eval()

354
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
altsoph's avatar
altsoph committed
355
356
357
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)
358
359

        with torch.no_grad():
altsoph's avatar
altsoph committed
360
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
361
362
363
364
365
366
367
368
369
370
371
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

    result = {
        "perplexity": perplexity
    }

372
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
373
374
375
376
377
378
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

379
    return result
380
381
382
383
384
385


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
386
387
    parser.add_argument("--train_data_file", default=None, type=str, required=True,
                        help="The input training data file (a text file).")
388
389
390
391
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
392
393
394
395
    parser.add_argument("--eval_data_file", default=None, type=str,
                        help="An optional input evaluation data file to evaluate the perplexity on (a text file).")

    parser.add_argument("--model_type", default="bert", type=str,
396
                        help="The model architecture to be fine-tuned.")
397
    parser.add_argument("--model_name_or_path", default="bert-base-cased", type=str,
398
399
400
401
402
403
404
                        help="The model checkpoint for weights initialization.")

    parser.add_argument("--mlm", action='store_true',
                        help="Train with masked-language modeling loss instead of language modeling.")
    parser.add_argument("--mlm_probability", type=float, default=0.15,
                        help="Ratio of tokens to mask for masked language modeling loss")

405
    parser.add_argument("--config_name", default="", type=str,
406
                        help="Optional pretrained config name or path if not the same as model_name_or_path")
407
    parser.add_argument("--tokenizer_name", default="", type=str,
408
                        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
409
    parser.add_argument("--cache_dir", default="", type=str,
410
411
412
413
                        help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
    parser.add_argument("--block_size", default=-1, type=int,
                        help="Optional input sequence length after tokenization."
                             "The training dataset will be truncated in block of this size for training."
thomwolf's avatar
typo  
thomwolf committed
414
                             "Default to the model max input length for single sentence inputs (take into account special tokens).")
415
416
417
418
419
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--evaluate_during_training", action='store_true',
420
                        help="Run evaluation during training at each logging step.")
421
422
423
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

424
    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
425
                        help="Batch size per GPU/CPU for training.")
426
    parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
427
428
429
430
431
432
433
434
435
436
437
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
438
    parser.add_argument("--num_train_epochs", default=1.0, type=float,
439
440
441
442
443
444
445
446
447
448
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
jinoobaek-qz's avatar
jinoobaek-qz committed
449
450
    parser.add_argument('--save_total_limit', type=int, default=None,
                        help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
451
    parser.add_argument("--eval_all_checkpoints", action='store_true',
452
                        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    args = parser.parse_args()

maxvidal's avatar
maxvidal committed
473
    if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
474
475
        raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
                         "flag (masked language modeling).")
476
477
478
    if args.eval_data_file is None and args.do_eval:
        raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
                         "or remove the --do_eval argument.")
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
514
515
516
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
517
518
519
520
521
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
522
    if args.block_size <= 0:
thomwolf's avatar
thomwolf committed
523
524
        args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
thomwolf's avatar
thomwolf committed
525
526
527
528
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
529
    model.to(args.device)
530
531

    if args.local_rank == 0:
532
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
533
534
535
536
537

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
538
539
540
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

541
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
542
543
544
545

        if args.local_rank == 0:
            torch.distributed.barrier()

546
547
548
549
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)


550
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
568
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
569
570
571
572
573
574
575
576
577
        model.to(args.device)


    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
578
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
579
580
581
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
582
583
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
584
585
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
586
            result = evaluate(args, model, tokenizer, prefix=prefix)
587
588
589
590
591
592
593
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

    return results


if __name__ == "__main__":
altsoph's avatar
altsoph committed
594
    main()