test_modeling_tf_vision_encoder_decoder.py 34.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
# coding=utf-8
# Copyright 2022 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow VisionEncoderDecoder model. """


import os
import tempfile
import unittest

import numpy as np

from transformers import is_tf_available, is_torch_available, is_vision_available
from transformers.testing_utils import (
    is_pt_tf_cross_test,
    require_tf,
    require_torch,
    require_vision,
    slow,
    torch_device,
)

from .test_modeling_tf_common import floats_tensor, ids_tensor
from .test_modeling_tf_gpt2 import TFGPT2ModelTester
from .test_modeling_tf_vit import TFViTModelTester


if is_tf_available():
    import tensorflow as tf

    from transformers import (
        AutoConfig,
        AutoFeatureExtractor,
        AutoTokenizer,
        TFAutoModel,
        TFAutoModelForCausalLM,
        TFGPT2LMHeadModel,
        TFVisionEncoderDecoderModel,
        TFViTModel,
        VisionEncoderDecoderConfig,
    )
    from transformers.modeling_tf_outputs import TFBaseModelOutput

if is_torch_available():
    import torch

    from transformers import GPT2LMHeadModel, VisionEncoderDecoderModel, ViTModel

if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


@require_tf
class TFVisionEncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
        raise NotImplementedError

    def prepare_config_and_inputs(self):
        raise NotImplementedError

    def get_pretrained_model(self):
        raise NotImplementedError

    def check_encoder_decoder_model_from_pretrained_configs(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = TFVisionEncoderDecoderModel(encoder_decoder_config)

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)

    def check_encoder_decoder_model(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
        self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)

        encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_hidden_states)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=None,
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)

    def check_encoder_decoder_model_from_pretrained(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        return_dict,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
        enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            return_dict=True,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)

    def check_save_and_load(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)

        outputs = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )
        out_2 = np.array(outputs[0])
        out_2[np.isnan(out_2)] = 0

        with tempfile.TemporaryDirectory() as tmpdirname:
            enc_dec_model.save_pretrained(tmpdirname)
            enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)

            after_outputs = enc_dec_model(
                pixel_values=pixel_values,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_1 = np.array(after_outputs[0])
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def check_encoder_decoder_model_labels(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)

        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            labels=labels,
        )

        # Make sure `loss` exist
        self.assertIn("loss", outputs_encoder_decoder)

        batch_size, seq_len = decoder_input_ids.shape
        expected_shape = (batch_size, seq_len - 1, decoder_config.vocab_size)
        self.assertEqual(outputs_encoder_decoder["logits"].shape, expected_shape)
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)

    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        # make the decoder inputs a different shape from the encoder inputs to harden the test
        decoder_input_ids = decoder_input_ids[:, :-1]
        decoder_attention_mask = decoder_attention_mask[:, :-1]
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
        )

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

        self.assertEqual(encoder_attentions[0].shape[-3:-2], (config.num_attention_heads,))

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
            1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
        )
        self.assertEqual(
            cross_attentions[0].shape[-3:-1],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len),
        )

    def check_encoder_decoder_model_generate(self, pixel_values, config, decoder_config, **kwargs):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            pixel_values, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(
            tuple(generated_output.shape.as_list()), (pixel_values.shape[0],) + (decoder_config.max_length,)
        )

    def check_pt_tf_equivalence(self, pt_model, tf_model, inputs_dict):

        pt_model.to(torch_device)
        pt_model.eval()

        # prepare inputs
        tf_inputs = inputs_dict
        pt_inputs = {k: torch.tensor(v.numpy()) for k, v in tf_inputs.items()}

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs).to_tuple()

        tf_outputs = tf_model(**inputs_dict).to_tuple()
        self.assertEqual(len(tf_outputs), len(pt_outputs), "Output lengths differ between TF and PyTorch")
        for tf_output, pt_output in zip(tf_outputs, pt_outputs):
            self.assert_almost_equals(tf_output.numpy(), pt_output.numpy(), 1e-3)

        # PT -> TF
        with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:

            pt_model.encoder.save_pretrained(encoder_tmp_dirname)
            pt_model.decoder.save_pretrained(decoder_tmp_dirname)
            tf_model_loaded = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
                encoder_tmp_dirname, decoder_tmp_dirname, encoder_from_pt=True, decoder_from_pt=True
            )
            # This is only for copying some specific attributes of this particular model.
            tf_model_loaded.config = pt_model.config

        tf_outputs_loaded = tf_model_loaded(**inputs_dict).to_tuple()
        self.assertEqual(len(tf_outputs_loaded), len(pt_outputs), "Output lengths differ between TF and PyTorch")
        for tf_output_loaded, pt_output in zip(tf_outputs_loaded, pt_outputs):
            self.assert_almost_equals(tf_output_loaded.numpy(), pt_output.numpy(), 1e-3)

    def check_equivalence_pt_to_tf(self, config, decoder_config, inputs_dict):

        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)

        pt_model = VisionEncoderDecoderModel(encoder_decoder_config)

        with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:

            pt_model.encoder.save_pretrained(encoder_tmp_dirname)
            pt_model.decoder.save_pretrained(decoder_tmp_dirname)
            tf_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
                encoder_tmp_dirname, decoder_tmp_dirname, encoder_from_pt=True, decoder_from_pt=True
            )
            # This is only for copying some specific attributes of this particular model.
            tf_model.config = pt_model.config

        self.check_pt_tf_equivalence(pt_model, tf_model, inputs_dict)

    def check_equivalence_tf_to_pt(self, config, decoder_config, inputs_dict):

        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)

        # Using `_tf_model`, the test will fail, because the weights of `_tf_model` get extended before saving
        # the encoder/decoder models.
        # There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
        #   https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
        #   (the change in `src/transformers/modeling_tf_utils.py`)
        _tf_model = TFVisionEncoderDecoderModel(encoder_decoder_config)
        # Make sure model is built
        _tf_model(**inputs_dict)

        # Using `tf_model` to pass the test.
        encoder = _tf_model.encoder.__class__(encoder_decoder_config.encoder)
        decoder = _tf_model.decoder.__class__(encoder_decoder_config.decoder)
        # Make sure models are built
        encoder(encoder.dummy_inputs)
        decoder(decoder.dummy_inputs)
        tf_model = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder)

        with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:

            tf_model.encoder.save_pretrained(encoder_tmp_dirname)
            tf_model.decoder.save_pretrained(decoder_tmp_dirname)
            pt_model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
                encoder_tmp_dirname, decoder_tmp_dirname, encoder_from_tf=True, decoder_from_tf=True
            )
            # This is only for copying some specific attributes of this particular model.
            pt_model.config = tf_model.config

        self.check_pt_tf_equivalence(pt_model, tf_model, inputs_dict)

    def test_encoder_decoder_model(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model(**config_inputs_dict)

    def test_encoder_decoder_model_from_pretrained_configs(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**config_inputs_dict)

    def test_encoder_decoder_model_from_pretrained(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=True)

    def test_save_and_load_from_pretrained(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**config_inputs_dict)

    def test_encoder_decoder_model_labels(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_labels(**config_inputs_dict)

    def test_encoder_decoder_model_output_attentions(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_output_attentions(**config_inputs_dict)

    def test_encoder_decoder_model_generate(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**config_inputs_dict)

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and tf is {diff} (>= {tol}).")

    @is_pt_tf_cross_test
    def test_pt_tf_equivalence(self):

        config_inputs_dict = self.prepare_config_and_inputs()
        # Keep only common arguments
        arg_names = [
            "config",
            "pixel_values",
            "decoder_config",
            "decoder_input_ids",
            "decoder_attention_mask",
            "encoder_hidden_states",
        ]
        config_inputs_dict = {k: v for k, v in config_inputs_dict.items() if k in arg_names}

        config = config_inputs_dict.pop("config")
        decoder_config = config_inputs_dict.pop("decoder_config")

        inputs_dict = config_inputs_dict
        # `encoder_hidden_states` is not used in model call/forward
        del inputs_dict["encoder_hidden_states"]

        # Avoid the case where a sequence has no place to attend (after combined with the causal attention mask)
        batch_size = inputs_dict["decoder_attention_mask"].shape[0]
        inputs_dict["decoder_attention_mask"] = tf.constant(
            np.concatenate([np.ones(shape=(batch_size, 1)), inputs_dict["decoder_attention_mask"][:, 1:]], axis=1)
        )

        # TF models don't use the `use_cache` option and cache is not returned as a default.
        # So we disable `use_cache` here for PyTorch model.
        decoder_config.use_cache = False

        self.assertTrue(decoder_config.cross_attention_hidden_size is None)

        # check without `enc_to_dec_proj` projection
        self.assertTrue(config.hidden_size == decoder_config.hidden_size)
        self.check_equivalence_pt_to_tf(config, decoder_config, inputs_dict)
        self.check_equivalence_tf_to_pt(config, decoder_config, inputs_dict)

        # This is not working, because pt/tf equivalence test for encoder-decoder use `from_encoder_decoder_pretrained`,
        # which randomly initialize `enc_to_dec_proj`.
        # # check `enc_to_dec_proj` work as expected
        # decoder_config.hidden_size = decoder_config.hidden_size * 2
        # self.assertTrue(config.hidden_size != decoder_config.hidden_size)
        # self.check_equivalence_pt_to_tf(config, decoder_config, inputs_dict)
        # self.check_equivalence_tf_to_pt(config, decoder_config, inputs_dict)

        # Let's just check `enc_to_dec_proj` can run for now
        decoder_config.hidden_size = decoder_config.hidden_size * 2
        self.assertTrue(config.hidden_size != decoder_config.hidden_size)
        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        model = TFVisionEncoderDecoderModel(encoder_decoder_config)
        model(**inputs_dict)

    @slow
    def test_real_model_save_load_from_pretrained(self):
        model_2 = self.get_pretrained_model()
        pixel_values = floats_tensor(
            [
                13,
                model_2.config.encoder.num_channels,
                model_2.config.encoder.image_size,
                model_2.config.encoder.image_size,
            ]
        )
        decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)

        outputs = model_2(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
        )
        out_2 = np.array(outputs[0])
        out_2[np.isnan(out_2)] = 0

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model_2.save_pretrained(tmp_dirname)
            model_1 = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)

            after_outputs = model_1(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
            out_1 = np.array(after_outputs[0])
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)


@require_tf
class TFViT2GPT2EncoderDecoderModelTest(TFVisionEncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained("google/vit-base-patch16-224-in21k", "gpt2")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = TFViTModel(config, name="encoder")
        decoder_model = TFGPT2LMHeadModel(decoder_config, name="decoder")
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = TFViTModelTester(self, batch_size=13)
        model_tester_decoder = TFGPT2ModelTester(self)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (config, pixel_values, labels) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_attention_mask,
            decoder_head_mask,
            decoder_token_type_ids,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        # disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "pixel_values": pixel_values,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "encoder_hidden_states": encoder_hidden_states,  # This is not used in the tests.
            "labels": decoder_token_labels,
        }


@require_tf
class TFVisionEncoderDecoderModelTest(unittest.TestCase):
    def get_from_encoderdecoder_pretrained_model(self):
        return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained("google/vit-base-patch16-224-in21k", "gpt2")

    def get_decoder_config(self):
        config = AutoConfig.from_pretrained("gpt2")
        config.is_decoder = True
        config.add_cross_attention = True
        return config

    def get_encoderdecoder_model(self):
        return TFVisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en")

    def get_encoder_decoder_models(self):
        encoder_model = TFViTModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
        decoder_model = TFGPT2LMHeadModel.from_pretrained("gpt2", config=self.get_decoder_config(), name="decoder")
        return {"encoder": encoder_model, "decoder": decoder_model}

    def _check_configuration_tie(self, model):
        assert id(model.decoder.config) == id(model.config.decoder)
        assert id(model.encoder.config) == id(model.config.encoder)

    @slow
    def test_configuration_tie(self):
        model = self.get_from_encoderdecoder_pretrained_model()
        self._check_configuration_tie(model)

        model = TFVisionEncoderDecoderModel(**self.get_encoder_decoder_models())
        self._check_configuration_tie(model)

        model = self.get_encoderdecoder_model()
        self._check_configuration_tie(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_tf
class TFVisionEncoderDecoderModelSaveLoadTests(unittest.TestCase):
    def get_encoder_decoder_config(self):
        encoder_config = AutoConfig.from_pretrained("google/vit-base-patch16-224-in21k")
        decoder_config = AutoConfig.from_pretrained("gpt2", is_decoder=True, add_cross_attention=True)
        return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)

    def get_encoder_decoder_config_small(self):
        encoder_config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-vit")
        decoder_config = AutoConfig.from_pretrained(
            "hf-internal-testing/tiny-random-gpt2", is_decoder=True, add_cross_attention=True
        )
        return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)

    def test_encoder_decoder_save_load_from_encoder_decoder(self):
        config = self.get_encoder_decoder_config_small()

        # create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
        encoder = TFViTModel(config.encoder)
        encoder(encoder.dummy_inputs)
        decoder = TFGPT2LMHeadModel(config.decoder)
        decoder(decoder.dummy_inputs)

        encoder_decoder_orig = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder)

        pixel_values = floats_tensor(
            [
                13,
                encoder.config.num_channels,
                encoder.config.image_size,
                encoder.config.image_size,
            ]
        )
        decoder_input_ids = ids_tensor([13, 1], decoder.config.vocab_size)

        logits_orig = encoder_decoder_orig(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits

        with tempfile.TemporaryDirectory() as tmp_dirname:
            encoder_path = os.path.join(tmp_dirname, "encoder")
            decoder_path = os.path.join(tmp_dirname, "decoder")

            encoder.save_pretrained(encoder_path)
            decoder.save_pretrained(decoder_path)

            encoder_decoder = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_path, decoder_path)

        logits_1 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits

        self.assertTrue(logits_orig.numpy().sum() - logits_1.numpy().sum() < 1e-3)

        max_diff = np.max(np.abs(logits_1.numpy() - logits_orig.numpy()))
        self.assertAlmostEqual(max_diff, 0.0, places=4)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            encoder_decoder.save_pretrained(tmp_dirname)
            encoder_decoder = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)

        logits_2 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits

        max_diff = np.max(np.abs(logits_2.numpy() - logits_orig.numpy()))
        self.assertAlmostEqual(max_diff, 0.0, places=4)

    @require_torch
    @is_pt_tf_cross_test
    def test_encoder_decoder_save_load_from_encoder_decoder_from_pt(self):
        config = self.get_encoder_decoder_config_small()

        # create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
        encoder_pt = ViTModel(config.encoder).to(torch_device).eval()
        decoder_pt = GPT2LMHeadModel(config.decoder).to(torch_device).eval()

        encoder_decoder_pt = VisionEncoderDecoderModel(encoder=encoder_pt, decoder=decoder_pt).to(torch_device).eval()

        pixel_values = floats_tensor(
            [
                13,
                encoder_pt.config.num_channels,
                encoder_pt.config.image_size,
                encoder_pt.config.image_size,
            ]
        )
        decoder_input_ids = ids_tensor([13, 1], decoder_pt.config.vocab_size)

        pt_pixel_values = torch.tensor(pixel_values.numpy(), device=torch_device, dtype=torch.float)
        pt_decoder_input_ids = torch.tensor(decoder_input_ids.numpy(), device=torch_device, dtype=torch.long)

        logits_pt = encoder_decoder_pt(pixel_values=pt_pixel_values, decoder_input_ids=pt_decoder_input_ids).logits

        # PyTorch => TensorFlow
        with tempfile.TemporaryDirectory() as tmp_dirname_1, tempfile.TemporaryDirectory() as tmp_dirname_2:
            encoder_decoder_pt.encoder.save_pretrained(tmp_dirname_1)
            encoder_decoder_pt.decoder.save_pretrained(tmp_dirname_2)
            encoder_decoder_tf = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
                tmp_dirname_1, tmp_dirname_2, encoder_from_pt=True, decoder_from_pt=True
            )

        logits_tf = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits

        max_diff = np.max(np.abs(logits_pt.detach().cpu().numpy() - logits_tf.numpy()))
        self.assertAlmostEqual(max_diff, 0.0, places=3)

        # Make sure `from_pretrained` following `save_pretrained` work and give the same result
        # (See https://github.com/huggingface/transformers/pull/14016)
        with tempfile.TemporaryDirectory() as tmp_dirname:
            encoder_decoder_tf.save_pretrained(tmp_dirname)
            encoder_decoder_tf = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)

            logits_tf_2 = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits

            max_diff = np.max(np.abs(logits_tf_2.numpy() - logits_tf.numpy()))
            self.assertAlmostEqual(max_diff, 0.0, places=3)

    @require_vision
    @slow
    def test_encoder_decoder_from_pretrained(self):
        load_weight_prefix = TFVisionEncoderDecoderModel.load_weight_prefix

        config = self.get_encoder_decoder_config()
        feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
        decoder_tokenizer = AutoTokenizer.from_pretrained("gpt2")

        img = prepare_img()
        pixel_values = feature_extractor(images=img, return_tensors="tf").pixel_values
        decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids

        with tempfile.TemporaryDirectory() as tmp_dirname:

            # Since most of HF's models don't have pretrained cross-attention layers, they are randomly
            # initialized even if we create models using `from_pretrained` method.
            # For the tests, the decoder need to be a model with pretrained cross-attention layers.
            # So we create pretrained models (without `load_weight_prefix`), save them, and later,
            # we load them using `from_pretrained`.
            # (we don't need to do this for encoder, but let's make the code more similar between encoder/decoder)
            encoder = TFAutoModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
            # It's necessary to specify `add_cross_attention=True` here.
            decoder = TFAutoModelForCausalLM.from_pretrained(
                "gpt2", is_decoder=True, add_cross_attention=True, name="decoder"
            )
            pretrained_encoder_dir = os.path.join(tmp_dirname, "pretrained_encoder")
            pretrained_decoder_dir = os.path.join(tmp_dirname, "pretrained_decoder")
            encoder.save_pretrained(pretrained_encoder_dir)
            decoder.save_pretrained(pretrained_decoder_dir)
            del encoder
            del decoder

            enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
                pretrained_encoder_dir,
                pretrained_decoder_dir,
            )
            # check that the from pretrained methods work
            enc_dec_model.save_pretrained(tmp_dirname)
            enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)

            output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)

            loss_pretrained = output.loss
            del enc_dec_model

            # Create the model using `__init__` with loaded ``pretrained`` encoder / decoder
            encoder = TFAutoModel.from_pretrained(
                pretrained_encoder_dir, load_weight_prefix=load_weight_prefix, name="encoder"
            )
            decoder = TFAutoModelForCausalLM.from_pretrained(
                pretrained_decoder_dir, load_weight_prefix=load_weight_prefix, name="decoder"
            )
            enc_dec_model = TFVisionEncoderDecoderModel(config=config, encoder=encoder, decoder=decoder)

        output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)

        loss_init = output.loss

        max_diff = np.max(np.abs(loss_pretrained - loss_init))
        expected_diff = 0.0

        self.assertAlmostEqual(max_diff, expected_diff, places=4)


@require_vision
@require_tf
class TFViT2GPT2ModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_coco_en(self):

        loc = "ydshieh/vit-gpt2-coco-en"

        feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
        tokenizer = AutoTokenizer.from_pretrained(loc)
        model = TFVisionEncoderDecoderModel.from_pretrained(loc)

        # We will verify our results on an image of cute cats
        img = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        pixel_values = feature_extractor(images=img, return_tensors="tf").pixel_values

        decoder_input_ids = tf.constant([[model.config.decoder_start_token_id]])

        logits = model(pixel_values, decoder_input_ids)[0].numpy()

        # verify the logits
        expected_shape = (1, 1, model.config.decoder.vocab_size)
        self.assertEqual(logits.shape, expected_shape)

        EXPECTED_LOGIT_SLICE = np.array(
            [
                -38.705807,
                -30.639929,
                -31.41903,
                -39.012012,
                -38.38696,
                -34.887207,
                -33.290855,
                -35.68447,
                -38.508484,
                -36.124645,
            ]
        )
        max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
        self.assertLessEqual(max_diff, 1e-4)

        def generate_step(pixel_values):
            outputs = model.generate(
                pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True, output_scores=True
            )
            output_ids = outputs.sequences
            preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            preds = [pred.strip() for pred in preds]

            return preds, outputs.scores.numpy()

        preds, scores = generate_step(pixel_values)

        # should produce
        # ["a cat laying on top of a couch next to another cat"]
        self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])