test_modeling_yolos.py 15.3 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch YOLOS model. """


import inspect
import unittest

from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available

Yih-Dar's avatar
Yih-Dar committed
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
28
29
30
31
32
33
34


if is_torch_available():
    import torch
    from torch import nn

    from transformers import YolosForObjectDetection, YolosModel
NielsRogge's avatar
NielsRogge committed
35
    from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
NielsRogge's avatar
NielsRogge committed
36
37
38
39
40


if is_vision_available():
    from PIL import Image

41
    from transformers import AutoImageProcessor
NielsRogge's avatar
NielsRogge committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89


class YolosModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=[30, 30],
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
        n_targets=8,
        num_detection_tokens=10,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
        self.n_targets = n_targets
        self.num_detection_tokens = num_detection_tokens
        # we set the expected sequence length (which is used in several tests)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
NielsRogge's avatar
NielsRogge committed
90
        num_patches = (image_size[1] // patch_size) * (image_size[0] // patch_size)
NielsRogge's avatar
NielsRogge committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        self.expected_seq_len = num_patches + 1 + self.num_detection_tokens

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])

        labels = None
        if self.use_labels:
            # labels is a list of Dict (each Dict being the labels for a given example in the batch)
            labels = []
            for i in range(self.batch_size):
                target = {}
                target["class_labels"] = torch.randint(
                    high=self.num_labels, size=(self.n_targets,), device=torch_device
                )
                target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
                labels.append(target)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return YolosConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
            num_detection_tokens=self.num_detection_tokens,
            num_labels=self.num_labels,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = YolosModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size)
        )

    def create_and_check_for_object_detection(self, config, pixel_values, labels):
        model = YolosForObjectDetection(config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values=pixel_values)
        result = model(pixel_values)

        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4))

        result = model(pixel_values=pixel_values, labels=labels)

        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
164
class YolosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
165
166
167
168
169
170
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as YOLOS does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
171
172
173
    pipeline_model_mapping = (
        {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {}
    )
NielsRogge's avatar
NielsRogge committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    test_torchscript = False

    # special case for head model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "YolosForObjectDetection":
                labels = []
                for i in range(self.model_tester.batch_size):
                    target = {}
                    target["class_labels"] = torch.ones(
                        size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
                    )
                    target["boxes"] = torch.ones(
                        self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
                    )
                    labels.append(target)
                inputs_dict["labels"] = labels

        return inputs_dict

    def setUp(self):
        self.model_tester = YolosModelTester(self)
        self.config_tester = ConfigTester(self, config_class=YolosConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # YOLOS does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        # in YOLOS, the seq_len is different
        seq_len = self.model_tester.expected_seq_len
        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            # YOLOS has a different seq_length
            seq_length = self.model_tester.expected_seq_len

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_object_detection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_object_detection(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = YolosModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class YolosModelIntegrationTest(unittest.TestCase):
    @cached_property
348
349
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained("hustvl/yolos-small") if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
350
351
352
353
354

    @slow
    def test_inference_object_detection_head(self):
        model = YolosForObjectDetection.from_pretrained("hustvl/yolos-small").to(torch_device)

355
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
356
        image = prepare_img()
357
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
358
359
360
361
362

        # forward pass
        with torch.no_grad():
            outputs = model(inputs.pixel_values)

363
        # verify outputs
NielsRogge's avatar
NielsRogge committed
364
365
366
367
368
369
370
371
372
373
374
375
        expected_shape = torch.Size((1, 100, 92))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice_logits = torch.tensor(
            [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]],
            device=torch_device,
        )
        expected_slice_boxes = torch.tensor(
            [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]], device=torch_device
        )
        self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
        self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
376
377

        # verify postprocessing
378
        results = image_processor.post_process_object_detection(
379
380
381
382
383
384
385
386
387
388
            outputs, threshold=0.3, target_sizes=[image.size[::-1]]
        )[0]
        expected_scores = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(torch_device)
        expected_labels = [75, 75, 17, 63, 17]
        expected_slice_boxes = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(torch_device)

        self.assertEqual(len(results["scores"]), 5)
        self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
        self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
        self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))