test_modeling_trocr.py 7.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch TrOCR model. """

import unittest

from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device

22
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
25
from ...test_pipeline_mixin import PipelineTesterMixin
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161


if is_torch_available():
    import torch

    from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM


@require_torch
class TrOCRStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
        decoder_layers=4,
        decoder_attention_heads=4,
        max_position_embeddings=30,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings

        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = TrOCRConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
        )

        return (config, input_ids, attention_mask, lm_labels)

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = TrOCRDecoder(config=config).to(torch_device).eval()
        input_ids = input_ids[:2]

        input_ids[input_ids == 0] += 1
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((2, 1), config.vocab_size - 1) + 1

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, lm_labels = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
        return config, inputs_dict


@require_torch
162
class TrOCRStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
163
164
    all_model_classes = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (TrOCRForCausalLM,) if is_torch_available() else ()
165
    pipeline_model_mapping = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {}
166
    fx_compatible = True
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    test_pruning = False

    def setUp(self):
        self.model_tester = TrOCRStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=TrOCRConfig)

    # not implemented currently
    def test_inputs_embeds(self):
        pass

    # trocr has no base model
    def test_save_load_fast_init_from_base(self):
        pass

    # trocr has no base model
    def test_save_load_fast_init_to_base(self):
        pass

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    # decoder cannot keep gradients
    def test_retain_grad_hidden_states_attentions(self):
        return
195
196
197
198

    @unittest.skip("The model doesn't support left padding")  # and it's not used enough to be worth fixing :)
    def test_left_padding_compatibility(self):
        pass