run_multiple_choice.py 28.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
erenup's avatar
erenup committed
16
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
17
18
19
20
21
22
23
24
25
26


import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
27
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
28
29
30
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

31
32
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
33
    AdamW,
34
35
36
37
38
39
    BertConfig,
    BertForMultipleChoice,
    BertTokenizer,
    RobertaConfig,
    RobertaForMultipleChoice,
    RobertaTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
40
41
42
43
    XLNetConfig,
    XLNetForMultipleChoice,
    XLNetTokenizer,
    get_linear_schedule_with_warmup,
44
)
Aymeric Augustin's avatar
Aymeric Augustin committed
45
from utils_multiple_choice import convert_examples_to_features, processors
46
47


Aymeric Augustin's avatar
Aymeric Augustin committed
48
49
try:
    from torch.utils.tensorboard import SummaryWriter
50
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
51
52
    from tensorboardX import SummaryWriter

53
54
55

logger = logging.getLogger(__name__)

56
57
58
ALL_MODELS = sum(
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, RobertaConfig)), ()
)
59
60

MODEL_CLASSES = {
61
62
63
    "bert": (BertConfig, BertForMultipleChoice, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForMultipleChoice, XLNetTokenizer),
    "roberta": (RobertaConfig, RobertaForMultipleChoice, RobertaTokenizer),
64
65
}

66

67
def select_field(features, field):
68
    return [[choice[field] for choice in feature.choices_features] for feature in features]
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98


def simple_accuracy(preds, labels):
    return (preds == labels).mean()


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
99
    no_decay = ["bias", "LayerNorm.weight"]
100
    optimizer_grouped_parameters = [
101
102
103
104
105
106
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
107
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
108
109
110
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
111
112
113
114
115
116
117
118
119
120
121
122
123
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
124
125
126
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
127
128
129
130
131
132

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
133
134
135
136
137
138
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
139
140
141
142
143
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
144
    best_dev_acc = 0.0
erenup's avatar
erenup committed
145
    best_steps = 0
146
147
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
148
    set_seed(args)  # Added here for reproductibility
149
150
151
152
153
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
154
155
156
157
158
159
160
161
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": batch[2]
                if args.model_type in ["bert", "xlnet"]
                else None,  # XLM don't use segment_ids
                "labels": batch[3],
            }
162
            outputs = model(**inputs)
163
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
164
165

            if args.n_gpu > 1:
166
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
167
168
169
170
171
172
173
174
175
176
177
178
179
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
180

181
                optimizer.step()
182
                scheduler.step()  # Update learning rate schedule
183
184
185
186
187
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
188
189
190
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
191
192
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
193
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
erenup's avatar
erenup committed
194
                        if results["eval_acc"] > best_dev_acc:
erenup's avatar
erenup committed
195
                            best_dev_acc = results["eval_acc"]
erenup's avatar
erenup committed
196
197
198
199
                            best_steps = global_step
                            if args.do_test:
                                results_test = evaluate(args, model, tokenizer, test=True)
                                for key, value in results_test.items():
200
201
202
203
204
205
206
207
208
209
210
211
212
213
                                    tb_writer.add_scalar("test_{}".format(key), value, global_step)
                                logger.info(
                                    "test acc: %s, loss: %s, global steps: %s",
                                    str(results_test["eval_acc"]),
                                    str(results_test["eval_loss"]),
                                    str(global_step),
                                )
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
                    logger.info(
                        "Average loss: %s at global step: %s",
                        str((tr_loss - logging_loss) / args.logging_steps),
                        str(global_step),
                    )
214
215
216
217
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
218
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
219
220
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
221
222
223
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
224
225
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_vocabulary(output_dir)
226
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
227
228
229
230
231
232
233
234
235
236
237
238
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

erenup's avatar
erenup committed
239
    return global_step, tr_loss / global_step, best_steps
240
241


erenup's avatar
erenup committed
242
def evaluate(args, model, tokenizer, prefix="", test=False):
243
244
245
246
247
    eval_task_names = (args.task_name,)
    eval_outputs_dirs = (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
erenup's avatar
erenup committed
248
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=not test, test=test)
249
250
251
252
253
254

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
255
        eval_sampler = SequentialSampler(eval_dataset)
256
257
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
258
        # multi-gpu evaluate
259
        if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
260
261
            model = torch.nn.DataParallel(model)

262
263
264
265
266
267
268
269
270
271
272
273
274
        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
275
276
277
278
279
280
281
282
                inputs = {
                    "input_ids": batch[0],
                    "attention_mask": batch[1],
                    "token_type_ids": batch[2]
                    if args.model_type in ["bert", "xlnet"]
                    else None,  # XLM don't use segment_ids
                    "labels": batch[3],
                }
283
284
285
286
287
288
289
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
290
                out_label_ids = inputs["labels"].detach().cpu().numpy()
291
292
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
293
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
294
295
296
297
298
299
300

        eval_loss = eval_loss / nb_eval_steps
        preds = np.argmax(preds, axis=1)
        acc = simple_accuracy(preds, out_label_ids)
        result = {"eval_acc": acc, "eval_loss": eval_loss}
        results.update(result)

erenup's avatar
erenup committed
301
        output_eval_file = os.path.join(eval_output_dir, "is_test_" + str(test).lower() + "_eval_results.txt")
erenup's avatar
erenup committed
302

303
        with open(output_eval_file, "w") as writer:
erenup's avatar
erenup committed
304
            logger.info("***** Eval results {} *****".format(str(prefix) + " is test:" + str(test)))
erenup's avatar
erenup committed
305
            writer.write("model           =%s\n" % str(args.model_name_or_path))
306
307
308
309
310
311
312
313
            writer.write(
                "total batch size=%d\n"
                % (
                    args.per_gpu_train_batch_size
                    * args.gradient_accumulation_steps
                    * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)
                )
            )
erenup's avatar
erenup committed
314
315
316
            writer.write("train num epochs=%d\n" % args.num_train_epochs)
            writer.write("fp16            =%s\n" % args.fp16)
            writer.write("max seq length  =%d\n" % args.max_seq_length)
317
318
319
320
321
322
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
    return results


erenup's avatar
erenup committed
323
def load_and_cache_examples(args, task, tokenizer, evaluate=False, test=False):
324
325
326
327
328
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    # Load data features from cache or dataset file
erenup's avatar
erenup committed
329
    if evaluate:
330
        cached_mode = "dev"
erenup's avatar
erenup committed
331
    elif test:
332
        cached_mode = "test"
erenup's avatar
erenup committed
333
    else:
334
        cached_mode = "train"
335
    assert not (evaluate and test)
336
337
338
339
340
341
342
343
344
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            cached_mode,
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
345
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
346
347
348
349
350
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
erenup's avatar
erenup committed
351
352
353
354
355
356
        if evaluate:
            examples = processor.get_dev_examples(args.data_dir)
        elif test:
            examples = processor.get_test_examples(args.data_dir)
        else:
            examples = processor.get_train_examples(args.data_dir)
357
        logger.info("Training number: %s", str(len(examples)))
358
359
360
361
362
        features = convert_examples_to_features(
            examples,
            label_list,
            args.max_seq_length,
            tokenizer,
363
            pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
364
            pad_token=tokenizer.pad_token_id,
365
            pad_token_segment_id=tokenizer.pad_token_type_id,
366
        )
367
368
369
370
371
372
373
374
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
375
376
377
    all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
    all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
    all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
378
379
380
381
382
383
384
385
386
    all_label_ids = torch.tensor([f.label for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset


def main():
    parser = argparse.ArgumentParser()

387
    # Required parameters
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
423

424
    # Other parameters
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test", action="store_true", help="Whether to run test on the test set")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

482
483
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
513
514
    args = parser.parse_args()

515
516
517
518
519
520
521
522
523
524
525
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
526
527
528
529
530

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
531

532
533
534
535
536
537
538
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
539
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
540
541
542
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
543
        torch.distributed.init_process_group(backend="nccl")
544
545
546
547
        args.n_gpu = 1
    args.device = device

    # Setup logging
548
549
550
551
552
553
554
555
556
557
558
559
560
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
596
597
598
599
600
601
602

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)
603
    best_steps = 0
604
605
606
607

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
608
        global_step, tr_loss, best_steps = train(args, train_dataset, model, tokenizer)
609
610
611
612
613
614
615
616
617
618
619
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
620
621
622
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
623
624
625
626
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
627
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
628
629
630
631
632
633
634
635
636
637
638
639
640

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if not args.do_train:
            args.output_dir = args.model_name_or_path
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
641
642
643
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
644
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
645
646
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
647
648
649
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

650
651
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
652
            result = evaluate(args, model, tokenizer, prefix=prefix)
653
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
654
655
            results.update(result)

erenup's avatar
erenup committed
656
657
658
659
    if args.do_test and args.local_rank in [-1, 0]:
        if not args.do_train:
            args.output_dir = args.model_name_or_path
        checkpoints = [args.output_dir]
erenup's avatar
erenup committed
660
661
        # if args.eval_all_checkpoints: # can not use this to do test!!
        #     checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
662
        #     logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
erenup's avatar
erenup committed
663
664
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
665
666
667
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

erenup's avatar
erenup committed
668
669
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
670
            result = evaluate(args, model, tokenizer, prefix=prefix, test=True)
671
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
erenup's avatar
erenup committed
672
            results.update(result)
673
674
    if best_steps:
        logger.info("best steps of eval acc is the following checkpoints: %s", best_steps)
675
676
677
678
679
    return results


if __name__ == "__main__":
    main()