bertarize.py 4.97 KB
Newer Older
Victor SANH's avatar
Victor SANH committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2020-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Once a model has been fine-pruned, the weights that are masked during the forward pass can be pruned once for all.
For instance, once the a model from the :class:`~emmental.MaskedBertForSequenceClassification` is trained, it can be saved (and then loaded)
as a standard :class:`~transformers.BertForSequenceClassification`.
"""

Victor SANH's avatar
Victor SANH committed
20
import argparse
Victor SANH's avatar
Victor SANH committed
21
22
23
24
25
import os
import shutil

import torch

Victor SANH's avatar
Victor SANH committed
26
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
Victor SANH's avatar
Victor SANH committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


def main(args):
    pruning_method = args.pruning_method
    threshold = args.threshold

    model_name_or_path = args.model_name_or_path.rstrip("/")
    target_model_path = args.target_model_path

    print(f"Load fine-pruned model from {model_name_or_path}")
    model = torch.load(os.path.join(model_name_or_path, "pytorch_model.bin"))
    pruned_model = {}

    for name, tensor in model.items():
        if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
            pruned_model[name] = tensor
Victor SANH's avatar
Victor SANH committed
43
            print(f"Copied layer {name}")
Victor SANH's avatar
Victor SANH committed
44
45
        elif "classifier" in name or "qa_output" in name:
            pruned_model[name] = tensor
Victor SANH's avatar
Victor SANH committed
46
            print(f"Copied layer {name}")
Victor SANH's avatar
Victor SANH committed
47
48
        elif "bias" in name:
            pruned_model[name] = tensor
Victor SANH's avatar
Victor SANH committed
49
            print(f"Copied layer {name}")
Victor SANH's avatar
Victor SANH committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        else:
            if pruning_method == "magnitude":
                mask = MagnitudeBinarizer.apply(inputs=tensor, threshold=threshold)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            elif pruning_method == "topK":
                if "mask_scores" in name:
                    continue
                prefix_ = name[:-6]
                scores = model[f"{prefix_}mask_scores"]
                mask = TopKBinarizer.apply(scores, threshold)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            elif pruning_method == "sigmoied_threshold":
                if "mask_scores" in name:
                    continue
                prefix_ = name[:-6]
                scores = model[f"{prefix_}mask_scores"]
                mask = ThresholdBinarizer.apply(scores, threshold, True)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            elif pruning_method == "l0":
                if "mask_scores" in name:
                    continue
                prefix_ = name[:-6]
                scores = model[f"{prefix_}mask_scores"]
                l, r = -0.1, 1.1
                s = torch.sigmoid(scores)
                s_bar = s * (r - l) + l
                mask = s_bar.clamp(min=0.0, max=1.0)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            else:
                raise ValueError("Unknown pruning method")

    if target_model_path is None:
        target_model_path = os.path.join(
            os.path.dirname(model_name_or_path), f"bertarized_{os.path.basename(model_name_or_path)}"
        )

    if not os.path.isdir(target_model_path):
        shutil.copytree(model_name_or_path, target_model_path)
        print(f"\nCreated folder {target_model_path}")

    torch.save(pruned_model, os.path.join(target_model_path, "pytorch_model.bin"))
    print("\nPruned model saved! See you later!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--pruning_method",
Victor SANH's avatar
space  
Victor SANH committed
103
        choices=["l0", "magnitude", "topK", "sigmoied_threshold",],
Victor SANH's avatar
Victor SANH committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        type=str,
        required=True,
        help="Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning, sigmoied_threshold = Soft movement pruning)",
    )
    parser.add_argument(
        "--threshold",
        type=float,
        required=False,
        help="For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."
        "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."
        "Not needed for `l0`",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        required=True,
        help="Folder containing the model that was previously fine-pruned",
    )
    parser.add_argument(
        "--target_model_path",
        default=None,
        type=str,
        required=False,
        help="Folder containing the model that was previously fine-pruned",
    )

    args = parser.parse_args()

    main(args)