run_mmimdb.py 24.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multimodal multiclass prediction on MM-IMDB dataset."""

from __future__ import absolute_import, division, print_function

import argparse
import glob
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import json
23
24
25
26
27
28
29
import logging
import os
import random

import numpy as np
import torch
import torch.nn as nn
Aymeric Augustin's avatar
Aymeric Augustin committed
30
from sklearn.metrics import f1_score
31
32
33
34
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

35
36
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
37
38
39
40
    AdamW,
    AlbertConfig,
    AlbertModel,
    AlbertTokenizer,
41
42
43
    BertConfig,
    BertModel,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
44
45
46
47
48
    DistilBertConfig,
    DistilBertModel,
    DistilBertTokenizer,
    MMBTConfig,
    MMBTForClassification,
49
50
51
52
53
54
55
56
57
    RobertaConfig,
    RobertaModel,
    RobertaTokenizer,
    XLMConfig,
    XLMModel,
    XLMTokenizer,
    XLNetConfig,
    XLNetModel,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
58
    get_linear_schedule_with_warmup,
59
)
Aymeric Augustin's avatar
Aymeric Augustin committed
60
61
62
63
64
65
66
from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_transforms, get_mmimdb_labels


try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter
67
68
69
70


logger = logging.getLogger(__name__)

71
72
73
74
75
76
77
ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig, DistilBertConfig)
    ),
    (),
)
78
79

MODEL_CLASSES = {
80
81
82
83
84
85
    "bert": (BertConfig, BertModel, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetModel, XLNetTokenizer),
    "xlm": (XLMConfig, XLMModel, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaModel, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertModel, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertModel, AlbertTokenizer),
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def train(args, train_dataset, model, tokenizer, criterion):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
104
105
106
107
108
109
110
    train_dataloader = DataLoader(
        train_dataset,
        sampler=train_sampler,
        batch_size=args.train_batch_size,
        collate_fn=collate_fn,
        num_workers=args.num_workers,
    )
111
112
113
114
115
116
117
118

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
119
    no_decay = ["bias", "LayerNorm.weight"]
120
    optimizer_grouped_parameters = [
121
122
123
124
125
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
126
127
128
    ]

    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
129
130
131
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
132
133
134
135
136
137
138
139
140
141
142
143
144
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
145
146
147
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
148
149
150
151
152
153

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
154
155
156
157
158
159
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    best_f1, n_no_improve = 0, 0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            labels = batch[5]
175
176
177
178
179
180
181
            inputs = {
                "input_ids": batch[0],
                "input_modal": batch[2],
                "attention_mask": batch[1],
                "modal_start_tokens": batch[3],
                "modal_end_tokens": batch[4],
            }
182
183
184
185
186
            outputs = model(**inputs)
            logits = outputs[0]  # model outputs are always tuple in transformers (see doc)
            loss = criterion(logits, labels)

            if args.n_gpu > 1:
187
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
211
212
213
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
214
215
                        results = evaluate(args, model, tokenizer, criterion)
                        for key, value in results.items():
216
                            eval_key = "eval_{}".format(key)
217
218
219
220
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
221
222
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
223
224
225
226
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
227
                    print(json.dumps({**logs, **{"step": global_step}}))
228
229
230

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
231
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
232
233
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
234
235
236
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
237
                    torch.save(model_to_save.state_dict(), os.path.join(output_dir, WEIGHTS_NAME))
238
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
239
240
241
242
243
244
245
246
247
248
249
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

        if args.local_rank == -1:
            results = evaluate(args, model, tokenizer, criterion)
250
251
            if results["micro_f1"] > best_f1:
                best_f1 = results["micro_f1"]
252
253
254
255
                n_no_improve = 0
            else:
                n_no_improve += 1

256
            if n_no_improve > args.patience:
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
                train_iterator.close()
                break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, criterion, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir
    eval_dataset = load_examples(args, tokenizer, evaluate=True)

    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset)
277
278
279
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn
    )
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    # multi-gpu eval
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
            batch = tuple(t.to(args.device) for t in batch)
            labels = batch[5]
300
301
302
303
304
305
306
            inputs = {
                "input_ids": batch[0],
                "input_modal": batch[2],
                "attention_mask": batch[1],
                "modal_start_tokens": batch[3],
                "modal_end_tokens": batch[4],
            }
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            outputs = model(**inputs)
            logits = outputs[0]  # model outputs are always tuple in transformers (see doc)
            tmp_eval_loss = criterion(logits, labels)
            eval_loss += tmp_eval_loss.mean().item()
        nb_eval_steps += 1
        if preds is None:
            preds = torch.sigmoid(logits).detach().cpu().numpy() > 0.5
            out_label_ids = labels.detach().cpu().numpy()
        else:
            preds = np.append(preds, torch.sigmoid(logits).detach().cpu().numpy() > 0.5, axis=0)
            out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    result = {
        "loss": eval_loss,
        "macro_f1": f1_score(out_label_ids, preds, average="macro"),
323
        "micro_f1": f1_score(out_label_ids, preds, average="micro"),
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    }

    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    return result


def load_examples(args, tokenizer, evaluate=False):
    path = os.path.join(args.data_dir, "dev.jsonl" if evaluate else "train.jsonl")
    transforms = get_image_transforms()
    labels = get_mmimdb_labels()
    dataset = JsonlDataset(path, tokenizer, transforms, labels, args.max_seq_length - args.num_image_embeds - 2)
    return dataset


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .jsonl files for MMIMDB.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
376
377

    ## Other parameters
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument(
        "--num_image_embeds", default=1, type=int, help="Number of Image Embeddings from the Image Encoder"
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument("--patience", default=5, type=int, help="Patience for Early Stopping.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument("--num_workers", type=int, default=8, help="number of worker threads for dataloading")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
470
471
    args = parser.parse_args()

472
473
474
475
476
477
478
479
480
481
482
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
483
484
485
486
487

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
488

489
490
491
492
493
494
495
496
497
498
499
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
500
        torch.distributed.init_process_group(backend="nccl")
501
502
503
504
505
        args.n_gpu = 1

    args.device = device

    # Setup logging
506
507
508
509
510
511
512
513
514
515
516
517
518
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
519
520
521
522
523
524
525
526
527
528
529
530
531

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    # Setup model
    labels = get_mmimdb_labels()
    num_labels = len(labels)
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
532
533
534
535
536
537
538
539
540
541
542
    transformer_config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    transformer = model_class.from_pretrained(
        args.model_name_or_path, config=transformer_config, cache_dir=args.cache_dir if args.cache_dir else None
    )
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    img_encoder = ImageEncoder(args)
    config = MMBTConfig(transformer_config, num_labels=num_labels)
    model = MMBTForClassification(config, transformer, img_encoder)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_examples(args, tokenizer, evaluate=False)
        label_frequences = train_dataset.get_label_frequencies()
        label_frequences = [label_frequences[l] for l in labels]
559
560
561
        label_weights = (
            torch.tensor(label_frequences, device=args.device, dtype=torch.float) / len(train_dataset)
        ) ** -1
562
563
564
565
566
567
568
569
570
571
572
573
574
        criterion = nn.BCEWithLogitsLoss(pos_weight=label_weights)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, criterion)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
575
576
577
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
578
579
580
581
        torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, WEIGHTS_NAME))
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
582
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
583
584
585
586
587
588
589
590
591
592
593
594
595

        # Load a trained model and vocabulary that you have fine-tuned
        model = MMBTForClassification(config, transformer, img_encoder)
        model.load_state_dict(torch.load(os.path.join(args.output_dir, WEIGHTS_NAME)))
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
596
597
598
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
599
600
601
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
602
603
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
604
605
606
607
            model = MMBTForClassification(config, transformer, img_encoder)
            model.load_state_dict(torch.load(checkpoint))
            model.to(args.device)
            result = evaluate(args, model, tokenizer, criterion, prefix=prefix)
608
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
609
610
611
612
613
614
615
            results.update(result)

    return results


if __name__ == "__main__":
    main()