run_lm_finetuning.py 28.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26
27

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
28
import pickle
29
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
30
31
import re
import shutil
32
33
34

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
35
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
36
from torch.utils.data.distributed import DistributedSampler
37
38
39
40
41
42

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

43
44
from tqdm import tqdm, trange

45
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
46
47
48
                                  BertConfig, BertForMaskedLM, BertTokenizer,
                                  GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
                                  OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
49
                                  RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
maxvidal's avatar
maxvidal committed
50
51
                                  DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer,
                                  CamembertConfig, CamembertForMaskedLM, CamembertTokenizer)
52

53

54
logger = logging.getLogger(__name__)
55
56
57


MODEL_CLASSES = {
58
    'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
59
    'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
60
    'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
61
    'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
maxvidal's avatar
maxvidal committed
62
63
    'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    'camembert': (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer)
64
65
66
}


67
class TextDataset(Dataset):
68
    def __init__(self, tokenizer, args, file_path='train', block_size=512):
69
70
        assert os.path.isfile(file_path)
        directory, filename = os.path.split(file_path)
71
        cached_features_file = os.path.join(directory, args.model_name_or_path + '_cached_lm_' + str(block_size) + '_' + filename)
72

Lysandre's avatar
Lysandre committed
73
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
74
75
76
77
78
79
80
81
82
83
84
            logger.info("Loading features from cached file %s", cached_features_file)
            with open(cached_features_file, 'rb') as handle:
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
85

mgrankin's avatar
mgrankin committed
86
            for i in range(0, len(tokenized_text)-block_size+1, block_size): # Truncate in block of block_size
87
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i:i+block_size]))
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
            with open(cached_features_file, 'wb') as handle:
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return torch.tensor(self.examples[item])


def load_and_cache_examples(args, tokenizer, evaluate=False):
104
    dataset = TextDataset(tokenizer, args, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
105
106
107
    return dataset


108
109
110
111
112
113
114
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

115

116
117
118
119
120
121
122
123
def _rotate_checkpoints(args, checkpoint_prefix, use_mtime=False):
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, '{}-*'.format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
124
125
126
    if len(glob_checkpoints) <= args.save_total_limit:
        return

127
    ordering_and_checkpoint_path = []
jinoobaek-qz's avatar
jinoobaek-qz committed
128
    for path in glob_checkpoints:
129
130
131
132
133
134
135
136
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
            regex_match = re.match('.*{}-([0-9]+)'.format(checkpoint_prefix), path)
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
137
138
139
140
141
142
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
143
144


145
def mask_tokens(inputs, tokenizer, args):
146
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
147
    labels = inputs.clone()
148
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
149
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
150
151
    special_tokens_mask = [tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()]
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
152
    masked_indices = torch.bernoulli(probability_matrix).bool()
153
154
155
    labels[~masked_indices] = -1  # We only compute loss on masked tokens

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
156
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
157
158
159
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
160
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
161
162
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
163

164
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
165
    return inputs, labels
166

167

168
169
170
171
172
173
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
174
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
175
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
190
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
220
    model.resize_token_embeddings(len(tokenizer))
221
222
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
223
    set_seed(args)  # Added here for reproducibility (even between python 2 and 3)
224
225
226
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
227
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
228
229
230
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
231
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
232
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
233
234

            if args.n_gpu > 1:
235
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
236
237
238
239
240
241
242
243
244
245
246
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
247
248
249
250
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
251
                optimizer.step()
252
                scheduler.step()  # Update learning rate schedule
253
254
255
256
257
258
259
260
261
262
263
264
265
266
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
267
                    checkpoint_prefix = 'checkpoint'
268
                    # Save model checkpoint
269
                    output_dir = os.path.join(args.output_dir, '{}-{}'.format(checkpoint_prefix, global_step))
270
271
272
273
274
275
276
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

277
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
304
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
305

ronakice's avatar
ronakice committed
306
307
308
309
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

310
311
312
313
314
315
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
316
317
    model.eval()

318
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
altsoph's avatar
altsoph committed
319
320
321
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)
322
323

        with torch.no_grad():
altsoph's avatar
altsoph committed
324
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
325
326
327
328
329
330
331
332
333
334
335
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

    result = {
        "perplexity": perplexity
    }

336
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
337
338
339
340
341
342
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

343
    return result
344
345
346
347
348
349


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
350
351
    parser.add_argument("--train_data_file", default=None, type=str, required=True,
                        help="The input training data file (a text file).")
352
353
354
355
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
356
357
358
359
    parser.add_argument("--eval_data_file", default=None, type=str,
                        help="An optional input evaluation data file to evaluate the perplexity on (a text file).")

    parser.add_argument("--model_type", default="bert", type=str,
360
                        help="The model architecture to be fine-tuned.")
361
    parser.add_argument("--model_name_or_path", default="bert-base-cased", type=str,
362
363
364
365
366
367
368
                        help="The model checkpoint for weights initialization.")

    parser.add_argument("--mlm", action='store_true',
                        help="Train with masked-language modeling loss instead of language modeling.")
    parser.add_argument("--mlm_probability", type=float, default=0.15,
                        help="Ratio of tokens to mask for masked language modeling loss")

369
    parser.add_argument("--config_name", default="", type=str,
370
                        help="Optional pretrained config name or path if not the same as model_name_or_path")
371
    parser.add_argument("--tokenizer_name", default="", type=str,
372
                        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
373
    parser.add_argument("--cache_dir", default="", type=str,
374
375
376
377
                        help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
    parser.add_argument("--block_size", default=-1, type=int,
                        help="Optional input sequence length after tokenization."
                             "The training dataset will be truncated in block of this size for training."
thomwolf's avatar
typo  
thomwolf committed
378
                             "Default to the model max input length for single sentence inputs (take into account special tokens).")
379
380
381
382
383
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--evaluate_during_training", action='store_true',
384
                        help="Run evaluation during training at each logging step.")
385
386
387
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

388
    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
389
                        help="Batch size per GPU/CPU for training.")
390
    parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
391
392
393
394
395
396
397
398
399
400
401
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
402
    parser.add_argument("--num_train_epochs", default=1.0, type=float,
403
404
405
406
407
408
409
410
411
412
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
jinoobaek-qz's avatar
jinoobaek-qz committed
413
414
    parser.add_argument('--save_total_limit', type=int, default=None,
                        help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
415
    parser.add_argument("--eval_all_checkpoints", action='store_true',
416
                        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    args = parser.parse_args()

maxvidal's avatar
maxvidal committed
437
    if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
438
439
        raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
                         "flag (masked language modeling).")
440
441
442
    if args.eval_data_file is None and args.do_eval:
        raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
                         "or remove the --do_eval argument.")
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
478
479
480
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
481
482
483
484
485
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
486
    if args.block_size <= 0:
thomwolf's avatar
thomwolf committed
487
488
        args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
thomwolf's avatar
thomwolf committed
489
490
491
492
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
493
    model.to(args.device)
494
495

    if args.local_rank == 0:
496
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
497
498
499
500
501

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
502
503
504
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

505
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
506
507
508
509

        if args.local_rank == 0:
            torch.distributed.barrier()

510
511
512
513
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)


514
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
532
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
533
534
535
536
537
538
539
540
541
        model.to(args.device)


    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
542
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
543
544
545
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
546
547
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
548
549
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
550
            result = evaluate(args, model, tokenizer, prefix=prefix)
551
552
553
554
555
556
557
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

    return results


if __name__ == "__main__":
altsoph's avatar
altsoph committed
558
    main()