pipelines.rst 17.5 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
.. 
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

Lysandre Debut's avatar
Lysandre Debut committed
13
Pipelines
Sylvain Gugger's avatar
Sylvain Gugger committed
14
-----------------------------------------------------------------------------------------------------------------------
Lysandre Debut's avatar
Lysandre Debut committed
15

Sylvain Gugger's avatar
Sylvain Gugger committed
16
17
The pipelines are a great and easy way to use models for inference. These pipelines are objects that abstract most of
the complex code from the library, offering a simple API dedicated to several tasks, including Named Entity
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
Recognition, Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question Answering. See the
:doc:`task summary <../task_summary>` for examples of use.
Lysandre Debut's avatar
Lysandre Debut committed
20
21
22

There are two categories of pipeline abstractions to be aware about:

Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
- The :func:`~transformers.pipeline` which is the most powerful object encapsulating all other pipelines.
- The other task-specific pipelines:

26
    - :class:`~transformers.AudioClassificationPipeline`
27
    - :class:`~transformers.AutomaticSpeechRecognitionPipeline`
Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
30
    - :class:`~transformers.ConversationalPipeline`
    - :class:`~transformers.FeatureExtractionPipeline`
    - :class:`~transformers.FillMaskPipeline`
Sylvain Gugger's avatar
Sylvain Gugger committed
31
    - :class:`~transformers.ImageClassificationPipeline`
32
    - :class:`~transformers.ImageSegmentationPipeline`
33
    - :class:`~transformers.ObjectDetectionPipeline`
Sylvain Gugger's avatar
Sylvain Gugger committed
34
35
    - :class:`~transformers.QuestionAnsweringPipeline`
    - :class:`~transformers.SummarizationPipeline`
36
    - :class:`~transformers.TableQuestionAnsweringPipeline`
Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
    - :class:`~transformers.TextClassificationPipeline`
    - :class:`~transformers.TextGenerationPipeline`
39
    - :class:`~transformers.Text2TextGenerationPipeline`
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
    - :class:`~transformers.TokenClassificationPipeline`
    - :class:`~transformers.TranslationPipeline`
42
    - :class:`~transformers.ZeroShotClassificationPipeline`
Lysandre Debut's avatar
Lysandre Debut committed
43
44

The pipeline abstraction
Sylvain Gugger's avatar
Sylvain Gugger committed
45
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lysandre Debut's avatar
Lysandre Debut committed
46

Sylvain Gugger's avatar
Sylvain Gugger committed
47
The `pipeline` abstraction is a wrapper around all the other available pipelines. It is instantiated as any other
48
pipeline but can provide additional quality of life.
Lysandre Debut's avatar
Lysandre Debut committed
49

50
51
52
53
54
55
56
57
Simple call on one item:

.. code-block::

    >>> pipe = pipeline("text-classification")
    >>> pipe("This restaurant is awesome")
    [{'label': 'POSITIVE', 'score': 0.9998743534088135}]

58
59
60
61
62
63
64
65
66
If you want to use a specific model from the `hub <https://huggingface.co>`__ you can ignore the task if the model on
the hub already defines it:

.. code-block::

    >>> pipe = pipeline(model="roberta-large-mnli")
    >>> pipe("This restaurant is awesome")
    [{'label': 'POSITIVE', 'score': 0.9998743534088135}]

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
To call a pipeline on many items, you can either call with a `list`.

.. code-block::

    >>> pipe = pipeline("text-classification")
    >>> pipe(["This restaurant is awesome", "This restaurant is aweful"])
    [{'label': 'POSITIVE', 'score': 0.9998743534088135},
     {'label': 'NEGATIVE', 'score': 0.9996669292449951}]


To iterate of full datasets it is recommended to use a :obj:`dataset` directly. This means you don't need to allocate
the whole dataset at once, nor do you need to do batching yourself. This should work just as fast as custom loops on
GPU. If it doesn't don't hesitate to create an issue.

.. code-block::

83
84
85
86
87
    import datasets
    from transformers import pipeline
    from transformers.pipelines.base import KeyDataset
    import tqdm

88
89
90
91
92
93
94
95
96
97
98
99
    pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
    dataset = datasets.load_dataset("superb", name="asr", split="test")

    # KeyDataset (only `pt`) will simply return the item in the dict returned by the dataset item
    # as we're not interested in the `target` part of the dataset.
    for out in tqdm.tqdm(pipe(KeyDataset(dataset, "file"))):
        print(out)
        # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
        # {"text": ....}
        # ....


Sylvain Gugger's avatar
Sylvain Gugger committed
100
.. autofunction:: transformers.pipeline
Lysandre Debut's avatar
Lysandre Debut committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
Pipeline batching
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

All pipelines (except `zero-shot-classification` and `question-answering` currently) can use batching. This will work
whenever the pipeline uses its streaming ability (so when passing lists or :obj:`Dataset`).

.. code-block::

    from transformers import pipeline                                                   
    from transformers.pipelines.base import KeyDataset
    import datasets
    import tqdm                                                                         

    dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
    pipe = pipeline("text-classification", device=0)
    for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
        print(out)
        # [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
        # Exactly the same output as before, but the content are passed
        # as batches to the model


.. warning::

    However, this is not automatically a win for performance. It can be either a 10x speedup or 5x slowdown depending
    on hardware, data and the actual model being used.

    Example where it's most a speedup:


.. code-block::

    from transformers import pipeline                                                   
    from torch.utils.data import Dataset                                                
    import tqdm                                                                         


    pipe = pipeline("text-classification", device=0)                                    


    class MyDataset(Dataset):                                                           
        def __len__(self):                                                              
            return 5000                                                                 

        def __getitem__(self, i):                                                       
            return "This is a test"                                                     


    dataset = MyDataset()   

    for batch_size in [1, 8, 64, 256]:
        print("-" * 30)                                                                     
        print(f"Streaming batch_size={batch_size}")    
        for out in tqdm.tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):              
            pass


.. code-block::

    # On GTX 970
    ------------------------------
    Streaming no batching
    100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 5000/5000 [00:26<00:00, 187.52it/s]
    ------------------------------
    Streaming batch_size=8
    100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:04<00:00, 1205.95it/s]
    ------------------------------
    Streaming batch_size=64
    100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:02<00:00, 2478.24it/s]
    ------------------------------
    Streaming batch_size=256
    100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:01<00:00, 2554.43it/s]
    (diminishing returns, saturated the GPU)


Example where it's most a slowdown:

.. code-block::

    class MyDataset(Dataset):                                                           
        def __len__(self):                                                              
            return 5000                                                                 

        def __getitem__(self, i):                                                       
            if i % 64 == 0:                                                          
                n = 100                                                              
            else:                                                                    
                n = 1                                                                
            return "This is a test" * n

This is a occasional very long sentence compared to the other. In that case, the **whole** batch will need to be 400
tokens long, so the whole batch will be [64, 400] instead of [64, 4], leading to the high slowdown. Even worse, on
bigger batches, the program simply crashes.


.. code-block::

    ------------------------------
    Streaming no batching
    100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 1000/1000 [00:05<00:00, 183.69it/s]
    ------------------------------
    Streaming batch_size=8
    100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 1000/1000 [00:03<00:00, 265.74it/s]
    ------------------------------
    Streaming batch_size=64
    100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 1000/1000 [00:26<00:00, 37.80it/s]
    ------------------------------
    Streaming batch_size=256
      0%|                                                                                 | 0/1000 [00:00<?, ?it/s]
    Traceback (most recent call last):
      File "/home/nicolas/src/transformers/test.py", line 42, in <module>
        for out in tqdm.tqdm(pipe(dataset, batch_size=256), total=len(dataset)):
    ....
        q = q / math.sqrt(dim_per_head)  # (bs, n_heads, q_length, dim_per_head)
    RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch)


There are no good (general) solutions for this problem, and your mileage may vary depending on your use cases. Rule of
thumb:

For users, a rule of thumb is:

- **Measure performance on your load, with your hardware. Measure, measure, and keep measuring. Real numbers are the
  only way to go.**
- If you are latency constrained (live product doing inference), don't batch
- If you are using CPU, don't batch.
- If you are using throughput (you want to run your model on a bunch of static data), on GPU, then:

      - If you have no clue about the size of the sequence_length ("natural" data), by default don't batch, measure and
        try tentatively to add it, add OOM checks to recover when it will fail (and it will at some point if you don't
        control the sequence_length.)
      - If your sequence_length is super regular, then batching is more likely to be VERY interesting, measure and push
        it until you get OOMs.
      - The larger the GPU the more likely batching is going to be more interesting
- As soon as you enable batching, make sure you can handle OOMs nicely.

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
Pipeline custom code
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you want to override a specific pipeline.

Don't hesitate to create an issue for your task at hand, the goal of the pipeline is to be easy to use and support most
cases, so :obj:`transformers` could maybe support your use case.


If you want to try simply you can:

- Subclass your pipeline of choice

.. code-block::

    class MyPipeline(TextClassificationPipeline):
        def postprocess(...):
            ...
            scores = scores * 100
            ...

    my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...)
    # or if you use `pipeline` function, then:
    my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline)

That should enable you to do all the custom code you want.
264
265


266
267
268
269
Implementing a pipeline
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:doc:`Implementing a new pipeline <../add_new_pipeline>`
Lysandre Debut's avatar
Lysandre Debut committed
270
271

The task specific pipelines
Sylvain Gugger's avatar
Sylvain Gugger committed
272
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lysandre Debut's avatar
Lysandre Debut committed
273

274

275
276
277
278
279
280
281
AudioClassificationPipeline
=======================================================================================================================

.. autoclass:: transformers.AudioClassificationPipeline
    :special-members: __call__
    :members:

282
283
284
285
286
287
288
AutomaticSpeechRecognitionPipeline
=======================================================================================================================

.. autoclass:: transformers.AutomaticSpeechRecognitionPipeline
    :special-members: __call__
    :members:

Sylvain Gugger's avatar
Sylvain Gugger committed
289
ConversationalPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
290
=======================================================================================================================
Lysandre Debut's avatar
Lysandre Debut committed
291

Sylvain Gugger's avatar
Sylvain Gugger committed
292
.. autoclass:: transformers.Conversation
Lysandre Debut's avatar
Lysandre Debut committed
293

Sylvain Gugger's avatar
Sylvain Gugger committed
294
295
296
297
298
.. autoclass:: transformers.ConversationalPipeline
    :special-members: __call__
    :members:

FeatureExtractionPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
299
=======================================================================================================================
Lysandre Debut's avatar
Lysandre Debut committed
300

Sylvain Gugger's avatar
Sylvain Gugger committed
301
302
303
.. autoclass:: transformers.FeatureExtractionPipeline
    :special-members: __call__
    :members:
Lysandre Debut's avatar
Lysandre Debut committed
304
305

FillMaskPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
306
=======================================================================================================================
Lysandre Debut's avatar
Lysandre Debut committed
307
308

.. autoclass:: transformers.FillMaskPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
309
310
    :special-members: __call__
    :members:
Lysandre Debut's avatar
Lysandre Debut committed
311

312
313
314
315
316
317
318
ImageClassificationPipeline
=======================================================================================================================

.. autoclass:: transformers.ImageClassificationPipeline
    :special-members: __call__
    :members:

319
320
321
322
323
324
325
ImageSegmentationPipeline
=======================================================================================================================

.. autoclass:: transformers.ImageSegmentationPipeline
    :special-members: __call__
    :members:

Sylvain Gugger's avatar
Sylvain Gugger committed
326
NerPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
327
=======================================================================================================================
Lysandre Debut's avatar
Lysandre Debut committed
328

329
330
331
.. autoclass:: transformers.NerPipeline

See :class:`~transformers.TokenClassificationPipeline` for all details.
Lysandre Debut's avatar
Lysandre Debut committed
332

333
334
335
336
337
338
339
ObjectDetectionPipeline
=======================================================================================================================

.. autoclass:: transformers.ObjectDetectionPipeline
    :special-members: __call__
    :members:

Lysandre Debut's avatar
Lysandre Debut committed
340
QuestionAnsweringPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
341
=======================================================================================================================
Lysandre Debut's avatar
Lysandre Debut committed
342
343

.. autoclass:: transformers.QuestionAnsweringPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
    :special-members: __call__
    :members:
346
347

SummarizationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
348
=======================================================================================================================
349
350

.. autoclass:: transformers.SummarizationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
351
352
    :special-members: __call__
    :members:
353

354
355
356
357
358
359
360
TableQuestionAnsweringPipeline
=======================================================================================================================

.. autoclass:: transformers.TableQuestionAnsweringPipeline
    :special-members: __call__


Sylvain Gugger's avatar
Sylvain Gugger committed
361
TextClassificationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
362
=======================================================================================================================
Sylvain Gugger's avatar
Sylvain Gugger committed
363
364
365
366

.. autoclass:: transformers.TextClassificationPipeline
    :special-members: __call__
    :members:
367
368

TextGenerationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
369
=======================================================================================================================
370
371

.. autoclass:: transformers.TextGenerationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
372
373
    :special-members: __call__
    :members:
374

375
Text2TextGenerationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
376
=======================================================================================================================
377
378
379
380
381

.. autoclass:: transformers.Text2TextGenerationPipeline
    :special-members: __call__
    :members:

Sylvain Gugger's avatar
Sylvain Gugger committed
382
TokenClassificationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
383
=======================================================================================================================
384

Sylvain Gugger's avatar
Sylvain Gugger committed
385
386
387
388
.. autoclass:: transformers.TokenClassificationPipeline
    :special-members: __call__
    :members:

389
390
391
392
393
394
395
TranslationPipeline
=======================================================================================================================

.. autoclass:: transformers.TranslationPipeline
    :special-members: __call__
    :members:

396
ZeroShotClassificationPipeline
Sylvain Gugger's avatar
Sylvain Gugger committed
397
=======================================================================================================================
398
399
400
401
402

.. autoclass:: transformers.ZeroShotClassificationPipeline
    :special-members: __call__
    :members:

Sylvain Gugger's avatar
Sylvain Gugger committed
403
Parent class: :obj:`Pipeline`
Sylvain Gugger's avatar
Sylvain Gugger committed
404
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylvain Gugger's avatar
Sylvain Gugger committed
405
406
407

.. autoclass:: transformers.Pipeline
    :members: