modeling_tf_mobilebert.py 63.9 KB
Newer Older
Vasily Shamporov's avatar
Vasily Shamporov committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 MobileBERT model. """


Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
from dataclasses import dataclass
from typing import Optional, Tuple
Vasily Shamporov's avatar
Vasily Shamporov committed
21
22
23
24

import tensorflow as tf

from . import MobileBertConfig
25
26
from .file_utils import (
    MULTIPLE_CHOICE_DUMMY_INPUTS,
Sylvain Gugger's avatar
Sylvain Gugger committed
27
    ModelOutput,
28
29
30
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_callable,
Sylvain Gugger's avatar
Sylvain Gugger committed
31
    replace_return_docstrings,
32
)
Vasily Shamporov's avatar
Vasily Shamporov committed
33
from .modeling_tf_bert import TFBertIntermediate, gelu, gelu_new, swish
Sylvain Gugger's avatar
Sylvain Gugger committed
34
35
36
37
38
39
40
41
42
43
from .modeling_tf_outputs import (
    TFBaseModelOutput,
    TFBaseModelOutputWithPooling,
    TFMaskedLMOutput,
    TFMultipleChoiceModelOutput,
    TFNextSentencePredictorOutput,
    TFQuestionAnsweringModelOutput,
    TFSequenceClassifierOutput,
    TFTokenClassifierOutput,
)
Vasily Shamporov's avatar
Vasily Shamporov committed
44
from .modeling_tf_utils import (
45
    TFMaskedLanguageModelingLoss,
Vasily Shamporov's avatar
Vasily Shamporov committed
46
47
48
49
50
51
52
53
54
55
    TFMultipleChoiceLoss,
    TFPreTrainedModel,
    TFQuestionAnsweringLoss,
    TFSequenceClassificationLoss,
    TFTokenClassificationLoss,
    get_initializer,
    keras_serializable,
    shape_list,
)
from .tokenization_utils import BatchEncoding
Lysandre Debut's avatar
Lysandre Debut committed
56
from .utils import logging
Vasily Shamporov's avatar
Vasily Shamporov committed
57
58


Lysandre Debut's avatar
Lysandre Debut committed
59
logger = logging.get_logger(__name__)
Vasily Shamporov's avatar
Vasily Shamporov committed
60

Sylvain Gugger's avatar
Sylvain Gugger committed
61
_CONFIG_FOR_DOC = "MobileBertConfig"
62
_TOKENIZER_FOR_DOC = "MobileBertTokenizer"
Vasily Shamporov's avatar
Vasily Shamporov committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "mobilebert-uncased",
    # See all MobileBERT models at https://huggingface.co/models?filter=mobilebert
]


def mish(x):
    return x * tf.tanh(tf.math.softplus(x))


class TFLayerNorm(tf.keras.layers.LayerNormalization):
    def __init__(self, feat_size, *args, **kwargs):
        super().__init__(*args, **kwargs)


class TFNoNorm(tf.keras.layers.Layer):
    def __init__(self, feat_size, epsilon=None, **kwargs):
        super().__init__(**kwargs)
        self.feat_size = feat_size

    def build(self, input_shape):
        self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros")
        self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones")

    def call(self, inputs: tf.Tensor):
        return inputs * self.weight + self.bias


ACT2FN = {
    "gelu": tf.keras.layers.Activation(gelu),
    "relu": tf.keras.activations.relu,
    "swish": tf.keras.layers.Activation(swish),
    "gelu_new": tf.keras.layers.Activation(gelu_new),
}
NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm}


class TFMobileBertEmbeddings(tf.keras.layers.Layer):
Lysandre's avatar
Lysandre committed
102
    """Construct the embeddings from word, position and token_type embeddings."""
Vasily Shamporov's avatar
Vasily Shamporov committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.trigram_input = config.trigram_input
        self.embedding_size = config.embedding_size
        self.vocab_size = config.vocab_size
        self.hidden_size = config.hidden_size
        self.initializer_range = config.initializer_range

        self.position_embeddings = tf.keras.layers.Embedding(
            config.max_position_embeddings,
            config.hidden_size,
            embeddings_initializer=get_initializer(self.initializer_range),
            name="position_embeddings",
        )
        self.token_type_embeddings = tf.keras.layers.Embedding(
            config.type_vocab_size,
            config.hidden_size,
            embeddings_initializer=get_initializer(self.initializer_range),
            name="token_type_embeddings",
        )

        self.embedding_transformation = tf.keras.layers.Dense(config.hidden_size, name="embedding_transformation")

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = NORM2FN[config.normalization_type](
            config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
        )
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

    def build(self, input_shape):
        """Build shared word embedding layer """
        with tf.name_scope("word_embeddings"):
            # Create and initialize weights. The random normal initializer was chosen
            # arbitrarily, and works well.
            self.word_embeddings = self.add_weight(
                "weight",
                shape=[self.vocab_size, self.embedding_size],
                initializer=get_initializer(self.initializer_range),
            )
        super().build(input_shape)

Julien Plu's avatar
Julien Plu committed
146
147
148
149
150
151
152
153
154
    def call(
        self,
        input_ids=None,
        position_ids=None,
        token_type_ids=None,
        inputs_embeds=None,
        mode="embedding",
        training=False,
    ):
Vasily Shamporov's avatar
Vasily Shamporov committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        """Get token embeddings of inputs.
        Args:
            inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
            mode: string, a valid value is one of "embedding" and "linear".
        Returns:
            outputs: (1) If mode == "embedding", output embedding tensor, float32 with
                shape [batch_size, length, embedding_size]; (2) mode == "linear", output
                linear tensor, float32 with shape [batch_size, length, vocab_size].
        Raises:
            ValueError: if mode is not valid.

        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        if mode == "embedding":
Julien Plu's avatar
Julien Plu committed
170
            return self._embedding(input_ids, position_ids, token_type_ids, inputs_embeds, training=training)
Vasily Shamporov's avatar
Vasily Shamporov committed
171
        elif mode == "linear":
Julien Plu's avatar
Julien Plu committed
172
            return self._linear(input_ids)
Vasily Shamporov's avatar
Vasily Shamporov committed
173
174
175
        else:
            raise ValueError("mode {} is not valid.".format(mode))

Julien Plu's avatar
Julien Plu committed
176
    def _embedding(self, input_ids, position_ids, token_type_ids, inputs_embeds, training=False):
Vasily Shamporov's avatar
Vasily Shamporov committed
177
        """Applies embedding based on inputs tensor."""
Julien Plu's avatar
Julien Plu committed
178
        assert not (input_ids is None and inputs_embeds is None)
Vasily Shamporov's avatar
Vasily Shamporov committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

        if input_ids is not None:
            input_shape = shape_list(input_ids)
        else:
            input_shape = shape_list(inputs_embeds)[:-1]

        seq_length = input_shape[1]
        if position_ids is None:
            position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
        if token_type_ids is None:
            token_type_ids = tf.fill(input_shape, 0)

        if inputs_embeds is None:
            inputs_embeds = tf.gather(self.word_embeddings, input_ids)

        if self.trigram_input:
            # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited
            # Devices (https://arxiv.org/abs/2004.02984)
            #
            # The embedding table in BERT models accounts for a substantial proportion of model size. To compress
            # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT.
            # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512
            # dimensional output.
            inputs_embeds = tf.concat(
                [
                    tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))),
                    inputs_embeds,
                    tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))),
                ],
                axis=2,
            )

        if self.trigram_input or self.embedding_size != self.hidden_size:
            inputs_embeds = self.embedding_transformation(inputs_embeds)

        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings, training=training)
Julien Plu's avatar
Julien Plu committed
220

Vasily Shamporov's avatar
Vasily Shamporov committed
221
222
223
224
        return embeddings

    def _linear(self, inputs):
        """Computes logits by running inputs through a linear layer.
Lysandre's avatar
Lysandre committed
225
226
227
228
        Args:
            inputs: A float32 tensor with shape [batch_size, length, hidden_size]
        Returns:
            float32 tensor with shape [batch_size, length, vocab_size].
Vasily Shamporov's avatar
Vasily Shamporov committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        """
        batch_size = shape_list(inputs)[0]
        length = shape_list(inputs)[1]

        x = tf.reshape(inputs, [-1, self.hidden_size])
        logits = tf.matmul(x, self.word_embeddings, transpose_b=True)

        return tf.reshape(logits, [batch_size, length, self.vocab_size])


class TFMobileBertSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
Julien Plu's avatar
Julien Plu committed
249
        self.output_attentions = config.output_attentions
Vasily Shamporov's avatar
Vasily Shamporov committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        assert config.hidden_size % config.num_attention_heads == 0
        self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = tf.keras.layers.Dense(
            self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
        )
        self.key = tf.keras.layers.Dense(
            self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
        )
        self.value = tf.keras.layers.Dense(
            self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
        )

        self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x, batch_size):
        x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
        return tf.transpose(x, perm=[0, 2, 1, 3])

Julien Plu's avatar
Julien Plu committed
270
271
272
    def call(
        self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False
    ):
Vasily Shamporov's avatar
Vasily Shamporov committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        batch_size = shape_list(attention_mask)[0]
        mixed_query_layer = self.query(query_tensor)
        mixed_key_layer = self.key(key_tensor)
        mixed_value_layer = self.value(value_tensor)
        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
        key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
        value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = tf.matmul(
            query_layer, key_layer, transpose_b=True
        )  # (batch size, num_heads, seq_len_q, seq_len_k)
        dk = tf.cast(shape_list(key_layer)[-1], tf.float32)  # scale attention_scores
        attention_scores = attention_scores / tf.math.sqrt(dk)

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = tf.nn.softmax(attention_scores, axis=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs, training=training)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = tf.matmul(attention_probs, value_layer)

        context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
        context_layer = tf.reshape(
            context_layer, (batch_size, -1, self.all_head_size)
        )  # (batch_size, seq_len_q, all_head_size)

Julien Plu's avatar
Julien Plu committed
310
        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
Vasily Shamporov's avatar
Vasily Shamporov committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

        return outputs


class TFMobileBertSelfOutput(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.use_bottleneck = config.use_bottleneck
        self.dense = tf.keras.layers.Dense(
            config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = NORM2FN[config.normalization_type](
            config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
        )
        if not self.use_bottleneck:
            self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

Julien Plu's avatar
Julien Plu committed
328
    def call(self, hidden_states, residual_tensor, training=False):
Vasily Shamporov's avatar
Vasily Shamporov committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        hidden_states = self.dense(hidden_states)
        if not self.use_bottleneck:
            hidden_states = self.dropout(hidden_states, training=training)
        hidden_states = self.LayerNorm(hidden_states + residual_tensor)
        return hidden_states


class TFMobileBertAttention(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.self = TFMobileBertSelfAttention(config, name="self")
        self.mobilebert_output = TFMobileBertSelfOutput(config, name="output")

    def prune_heads(self, heads):
        raise NotImplementedError

Julien Plu's avatar
Julien Plu committed
345
346
347
348
349
350
351
352
353
354
355
    def call(
        self,
        query_tensor,
        key_tensor,
        value_tensor,
        layer_input,
        attention_mask,
        head_mask,
        output_attentions,
        training=False,
    ):
Vasily Shamporov's avatar
Vasily Shamporov committed
356
        self_outputs = self.self(
Julien Plu's avatar
Julien Plu committed
357
            query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training
Vasily Shamporov's avatar
Vasily Shamporov committed
358
        )
Julien Plu's avatar
Julien Plu committed
359
360

        attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training)
Vasily Shamporov's avatar
Vasily Shamporov committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class TFMobileBertIntermediate(TFBertIntermediate):
    def __init__(self, config, **kwargs):
        super().__init__(config, **kwargs)
        self.dense = tf.keras.layers.Dense(config.intermediate_size, name="dense")


class TFOutputBottleneck(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense")
        self.LayerNorm = NORM2FN[config.normalization_type](
            config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
        )
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

Julien Plu's avatar
Julien Plu committed
380
    def call(self, hidden_states, residual_tensor, training=False):
Vasily Shamporov's avatar
Vasily Shamporov committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        layer_outputs = self.dense(hidden_states)
        layer_outputs = self.dropout(layer_outputs, training=training)
        layer_outputs = self.LayerNorm(layer_outputs + residual_tensor)
        return layer_outputs


class TFMobileBertOutput(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.use_bottleneck = config.use_bottleneck
        self.dense = tf.keras.layers.Dense(
            config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = NORM2FN[config.normalization_type](
            config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
        )
        if not self.use_bottleneck:
            self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
        else:
            self.bottleneck = TFOutputBottleneck(config, name="bottleneck")

Julien Plu's avatar
Julien Plu committed
402
    def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False):
Vasily Shamporov's avatar
Vasily Shamporov committed
403
404
        hidden_states = self.dense(hidden_states)
        if not self.use_bottleneck:
405
            hidden_states = self.dropout(hidden_states, training=training)
Vasily Shamporov's avatar
Vasily Shamporov committed
406
407
408
            hidden_states = self.LayerNorm(hidden_states + residual_tensor_1)
        else:
            hidden_states = self.LayerNorm(hidden_states + residual_tensor_1)
Julien Plu's avatar
Julien Plu committed
409
            hidden_states = self.bottleneck(hidden_states, residual_tensor_2)
Vasily Shamporov's avatar
Vasily Shamporov committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        return hidden_states


class TFBottleneckLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.intra_bottleneck_size, name="dense")
        self.LayerNorm = NORM2FN[config.normalization_type](
            config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm"
        )

    def call(self, inputs):
        hidden_states = self.dense(inputs)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class TFBottleneck(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.key_query_shared_bottleneck = config.key_query_shared_bottleneck
        self.use_bottleneck_attention = config.use_bottleneck_attention
        self.bottleneck_input = TFBottleneckLayer(config, name="input")
        if self.key_query_shared_bottleneck:
            self.attention = TFBottleneckLayer(config, name="attention")

    def call(self, hidden_states):
        # This method can return three different tuples of values. These different values make use of bottlenecks,
        # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory
        # usage. These linear layer have weights that are learned during training.
        #
        # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the
        # key, query, value, and "layer input" to be used by the attention layer.
        # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor
        # in the attention self output, after the attention scores have been computed.
        #
        # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return
        # four values, three of which have been passed through a bottleneck: the query and key, passed through the same
        # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck.
        #
        # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck,
        # and the residual layer will be this value passed through a bottleneck.

        bottlenecked_hidden_states = self.bottleneck_input(hidden_states)
        if self.use_bottleneck_attention:
            return (bottlenecked_hidden_states,) * 4
        elif self.key_query_shared_bottleneck:
            shared_attention_input = self.attention(hidden_states)
            return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states)
        else:
            return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states)


class TFFFNOutput(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.true_hidden_size, name="dense")
        self.LayerNorm = NORM2FN[config.normalization_type](
            config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
        )

    def call(self, hidden_states, residual_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + residual_tensor)
        return hidden_states


class TFFFNLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.intermediate = TFMobileBertIntermediate(config, name="intermediate")
        self.mobilebert_output = TFFFNOutput(config, name="output")

    def call(self, hidden_states):
        intermediate_output = self.intermediate(hidden_states)
        layer_outputs = self.mobilebert_output(intermediate_output, hidden_states)
        return layer_outputs


class TFMobileBertLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.use_bottleneck = config.use_bottleneck
        self.num_feedforward_networks = config.num_feedforward_networks
        self.attention = TFMobileBertAttention(config, name="attention")
        self.intermediate = TFMobileBertIntermediate(config, name="intermediate")
        self.mobilebert_output = TFMobileBertOutput(config, name="output")

        if self.use_bottleneck:
            self.bottleneck = TFBottleneck(config, name="bottleneck")
        if config.num_feedforward_networks > 1:
            self.ffn = [
                TFFFNLayer(config, name="ffn.{}".format(i)) for i in range(config.num_feedforward_networks - 1)
            ]

Julien Plu's avatar
Julien Plu committed
505
    def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False):
Vasily Shamporov's avatar
Vasily Shamporov committed
506
507
508
509
510
511
        if self.use_bottleneck:
            query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states)
        else:
            query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4

        attention_outputs = self.attention(
Julien Plu's avatar
Julien Plu committed
512
513
514
515
516
517
518
            query_tensor,
            key_tensor,
            value_tensor,
            layer_input,
            attention_mask,
            head_mask,
            output_attentions,
Vasily Shamporov's avatar
Vasily Shamporov committed
519
520
521
522
523
524
525
526
527
528
529
530
            training=training,
        )

        attention_output = attention_outputs[0]
        s = (attention_output,)

        if self.num_feedforward_networks != 1:
            for i, ffn_module in enumerate(self.ffn):
                attention_output = ffn_module(attention_output)
                s += (attention_output,)

        intermediate_output = self.intermediate(attention_output)
Julien Plu's avatar
Julien Plu committed
531
532
        layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training)

Vasily Shamporov's avatar
Vasily Shamporov committed
533
534
535
        outputs = (
            (layer_output,)
            + attention_outputs[1:]
Julien Plu's avatar
Julien Plu committed
536
537
538
539
540
541
542
543
544
            + (
                tf.constant(0),
                query_tensor,
                key_tensor,
                value_tensor,
                layer_input,
                attention_output,
                intermediate_output,
            )
Vasily Shamporov's avatar
Vasily Shamporov committed
545
546
            + s
        )  # add attentions if we output them
Julien Plu's avatar
Julien Plu committed
547

Vasily Shamporov's avatar
Vasily Shamporov committed
548
549
550
551
552
553
        return outputs


class TFMobileBertEncoder(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
Julien Plu's avatar
Julien Plu committed
554
555
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
Vasily Shamporov's avatar
Vasily Shamporov committed
556
557
        self.layer = [TFMobileBertLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)]

Sylvain Gugger's avatar
Sylvain Gugger committed
558
559
560
561
562
563
564
565
566
567
568
569
    def call(
        self,
        hidden_states,
        attention_mask,
        head_mask,
        output_attentions,
        output_hidden_states,
        return_dict,
        training=False,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
Vasily Shamporov's avatar
Vasily Shamporov committed
570
        for i, layer_module in enumerate(self.layer):
Julien Plu's avatar
Julien Plu committed
571
            if output_hidden_states:
Vasily Shamporov's avatar
Vasily Shamporov committed
572
573
574
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(
Julien Plu's avatar
Julien Plu committed
575
                hidden_states, attention_mask, head_mask[i], output_attentions, training=training
Vasily Shamporov's avatar
Vasily Shamporov committed
576
            )
Julien Plu's avatar
Julien Plu committed
577

Vasily Shamporov's avatar
Vasily Shamporov committed
578
579
            hidden_states = layer_outputs[0]

Julien Plu's avatar
Julien Plu committed
580
            if output_attentions:
Vasily Shamporov's avatar
Vasily Shamporov committed
581
582
583
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
Julien Plu's avatar
Julien Plu committed
584
        if output_hidden_states:
Vasily Shamporov's avatar
Vasily Shamporov committed
585
586
            all_hidden_states = all_hidden_states + (hidden_states,)

Sylvain Gugger's avatar
Sylvain Gugger committed
587
588
589
590
591
        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683


class TFMobileBertPooler(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.do_activate = config.classifier_activation
        if self.do_activate:
            self.dense = tf.keras.layers.Dense(
                config.hidden_size,
                kernel_initializer=get_initializer(config.initializer_range),
                activation="tanh",
                name="dense",
            )

    def call(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        if not self.do_activate:
            return first_token_tensor
        else:
            pooled_output = self.dense(first_token_tensor)
            return pooled_output


class TFMobileBertPredictionHeadTransform(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(
            config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm")

    def call(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class TFMobileBertLMPredictionHead(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.transform = TFMobileBertPredictionHeadTransform(config, name="transform")
        self.vocab_size = config.vocab_size
        self.config = config

    def build(self, input_shape):
        self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
        self.dense = self.add_weight(
            shape=(self.config.hidden_size - self.config.embedding_size, self.vocab_size),
            initializer="zeros",
            trainable=True,
            name="dense/weight",
        )
        self.decoder = self.add_weight(
            shape=(self.config.vocab_size, self.config.embedding_size),
            initializer="zeros",
            trainable=True,
            name="decoder/weight",
        )
        super().build(input_shape)

    def call(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0))
        hidden_states = hidden_states + self.bias
        return hidden_states


class TFMobileBertMLMHead(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.predictions = TFMobileBertLMPredictionHead(config, name="predictions")

    def call(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


@keras_serializable
class TFMobileBertMainLayer(tf.keras.layers.Layer):
    config_class = MobileBertConfig

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.num_hidden_layers = config.num_hidden_layers
        self.output_attentions = config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
684
        self.output_hidden_states = config.output_hidden_states
Sylvain Gugger's avatar
Sylvain Gugger committed
685
        self.return_dict = config.use_return_dict
Vasily Shamporov's avatar
Vasily Shamporov committed
686
687
688
689
690
691
692
693
694
695
696
697

        self.embeddings = TFMobileBertEmbeddings(config, name="embeddings")
        self.encoder = TFMobileBertEncoder(config, name="encoder")
        self.pooler = TFMobileBertPooler(config, name="pooler")

    def get_input_embeddings(self):
        return self.embeddings

    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
Lysandre's avatar
Lysandre committed
698
699
700
        """Prunes heads of the model.
        heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        See base class PreTrainedModel
Vasily Shamporov's avatar
Vasily Shamporov committed
701
702
703
704
705
706
707
708
709
710
711
712
        """
        raise NotImplementedError

    def call(
        self,
        inputs,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
713
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
714
        return_dict=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
715
716
717
718
719
720
721
722
723
724
        training=False,
    ):
        if isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
            token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
            position_ids = inputs[3] if len(inputs) > 3 else position_ids
            head_mask = inputs[4] if len(inputs) > 4 else head_mask
            inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
            output_attentions = inputs[6] if len(inputs) > 6 else output_attentions
Joseph Liu's avatar
Joseph Liu committed
725
            output_hidden_states = inputs[7] if len(inputs) > 7 else output_hidden_states
Sylvain Gugger's avatar
Sylvain Gugger committed
726
727
            return_dict = inputs[8] if len(inputs) > 8 else return_dict
            assert len(inputs) <= 9, "Too many inputs."
Vasily Shamporov's avatar
Vasily Shamporov committed
728
729
730
731
732
733
734
735
        elif isinstance(inputs, (dict, BatchEncoding)):
            input_ids = inputs.get("input_ids")
            attention_mask = inputs.get("attention_mask", attention_mask)
            token_type_ids = inputs.get("token_type_ids", token_type_ids)
            position_ids = inputs.get("position_ids", position_ids)
            head_mask = inputs.get("head_mask", head_mask)
            inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
            output_attentions = inputs.get("output_attentions", output_attentions)
Joseph Liu's avatar
Joseph Liu committed
736
            output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
Sylvain Gugger's avatar
Sylvain Gugger committed
737
738
            return_dict = inputs.get("return_dict", return_dict)
            assert len(inputs) <= 9, "Too many inputs."
Vasily Shamporov's avatar
Vasily Shamporov committed
739
740
741
742
        else:
            input_ids = inputs

        output_attentions = output_attentions if output_attentions is not None else self.output_attentions
Joseph Liu's avatar
Joseph Liu committed
743
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states
Sylvain Gugger's avatar
Sylvain Gugger committed
744
        return_dict = return_dict if return_dict is not None else self.return_dict
Vasily Shamporov's avatar
Vasily Shamporov committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = shape_list(input_ids)
        elif inputs_embeds is not None:
            input_shape = shape_list(inputs_embeds)[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if attention_mask is None:
            attention_mask = tf.fill(input_shape, 1)
        if token_type_ids is None:
            token_type_ids = tf.fill(input_shape, 0)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.

        extended_attention_mask = tf.cast(extended_attention_mask, tf.float32)
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            raise NotImplementedError
        else:
            head_mask = [None] * self.num_hidden_layers

Julien Plu's avatar
Julien Plu committed
786
        embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training)
Vasily Shamporov's avatar
Vasily Shamporov committed
787
        encoder_outputs = self.encoder(
Julien Plu's avatar
Julien Plu committed
788
789
790
791
792
            embedding_output,
            extended_attention_mask,
            head_mask,
            output_attentions,
            output_hidden_states,
Sylvain Gugger's avatar
Sylvain Gugger committed
793
            return_dict,
Joseph Liu's avatar
Joseph Liu committed
794
            training=training,
Vasily Shamporov's avatar
Vasily Shamporov committed
795
796
797
798
799
        )

        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
800
        if not return_dict:
Lysandre's avatar
Lysandre committed
801
802
803
804
            return (
                sequence_output,
                pooled_output,
            ) + encoder_outputs[1:]
Sylvain Gugger's avatar
Sylvain Gugger committed
805
806
807
808
809
810
811

        return TFBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
812
813
814


class TFMobileBertPreTrainedModel(TFPreTrainedModel):
Lysandre's avatar
Lysandre committed
815
816
    """An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
Vasily Shamporov's avatar
Vasily Shamporov committed
817
818
819
820
821
822
    """

    config_class = MobileBertConfig
    base_model_prefix = "mobilebert"


Sylvain Gugger's avatar
Sylvain Gugger committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
@dataclass
class TFMobileBertForPreTrainingOutput(ModelOutput):
    """
    Output type of :class:`~transformers.TFMobileBertForPreTrainingModel`.

    Args:
        prediction_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        seq_relationship_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, 2)`):
            Prediction scores of the next sequence prediction (classification) head (scores of True/False
            continuation before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    prediction_logits: tf.Tensor = None
    seq_relationship_logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


Vasily Shamporov's avatar
Vasily Shamporov committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
MOBILEBERT_START_DOCSTRING = r"""
    This model is a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ sub-class.
    Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.

    .. note::

        TF 2.0 models accepts two formats as inputs:

            - having all inputs as keyword arguments (like PyTorch models), or
            - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having
        all the tensors in the first argument of the model call function: :obj:`model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors
        in the first positional argument :

        - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)`
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
          :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associated to the input names given in the docstring:
          :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`

    Parameters:
        config (:class:`~transformers.MobileBertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

MOBILEBERT_INPUTS_DOCSTRING = r"""
    Args:
886
        input_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`{0}`):
Vasily Shamporov's avatar
Vasily Shamporov committed
887
888
889
890
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.MobileBertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
891
            :func:`transformers.PreTrainedTokenizer.__call__` for details.
Vasily Shamporov's avatar
Vasily Shamporov committed
892
893

            `What are input IDs? <../glossary.html#input-ids>`__
894
        attention_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`{0}`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
895
896
897
898
899
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.

            `What are attention masks? <../glossary.html#attention-mask>`__
900
        token_type_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`{0}`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
901
902
903
904
905
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token

            `What are token type IDs? <../glossary.html#token-type-ids>`__
906
        position_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`{0}`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
907
908
909
910
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`__
911
        head_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
912
913
914
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
915
        inputs_embeds (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, embedding_dim)`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
916
917
918
919
920
921
            Optionally, instead of passing :obj:`input_ids` you can  to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        training (:obj:`boolean`, `optional`, defaults to :obj:`False`):
            Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them
            (if set to :obj:`False`) for evaluation.
922
        output_attentions (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
923
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
924
        output_hidden_states (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
925
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
926
        return_dict (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
927
928
            If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
            plain tuple.
Vasily Shamporov's avatar
Vasily Shamporov committed
929
930
931
932
933
934
935
936
937
938
939
940
941
"""


@add_start_docstrings(
    "The bare MobileBert Model transformer outputing raw hidden-states without any specific head on top.",
    MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertModel(TFMobileBertPreTrainedModel):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
Sylvain Gugger's avatar
Sylvain Gugger committed
942
943
944
945
946
947
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/mobilebert-uncased",
        output_type=TFBaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
    )
Vasily Shamporov's avatar
Vasily Shamporov committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    def call(self, inputs, **kwargs):
        outputs = self.mobilebert(inputs, **kwargs)
        return outputs


@add_start_docstrings(
    """MobileBert Model with two heads on top as done during the pre-training:
    a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
    MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
962
963
        self.predictions = TFMobileBertMLMHead(config, name="predictions___cls")
        self.seq_relationship = TFMobileBertOnlyNSPHead(2, name="seq_relationship___cls")
Vasily Shamporov's avatar
Vasily Shamporov committed
964
965
966
967
968

    def get_output_embeddings(self):
        return self.mobilebert.embeddings

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
Sylvain Gugger's avatar
Sylvain Gugger committed
969
    @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
Vasily Shamporov's avatar
Vasily Shamporov committed
970
971
    def call(self, inputs, **kwargs):
        r"""
Lysandre's avatar
Lysandre committed
972
        Return:
Vasily Shamporov's avatar
Vasily Shamporov committed
973

Lysandre's avatar
Lysandre committed
974
        Examples::
Vasily Shamporov's avatar
Vasily Shamporov committed
975

Lysandre's avatar
Lysandre committed
976
977
            >>> import tensorflow as tf
            >>> from transformers import MobileBertTokenizer, TFMobileBertForPreTraining
Vasily Shamporov's avatar
Vasily Shamporov committed
978

Lysandre's avatar
Lysandre committed
979
980
981
982
983
            >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
            >>> model = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased')
            >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
            >>> outputs = model(input_ids)
            >>> prediction_scores, seq_relationship_scores = outputs[:2]
Vasily Shamporov's avatar
Vasily Shamporov committed
984
985

        """
Sylvain Gugger's avatar
Sylvain Gugger committed
986
987
        return_dict = kwargs.get("return_dict")
        return_dict = return_dict if return_dict is not None else self.mobilebert.return_dict
Vasily Shamporov's avatar
Vasily Shamporov committed
988
989
990
        outputs = self.mobilebert(inputs, **kwargs)

        sequence_output, pooled_output = outputs[:2]
991
992
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
Vasily Shamporov's avatar
Vasily Shamporov committed
993

Sylvain Gugger's avatar
Sylvain Gugger committed
994
995
996
997
998
999
1000
1001
1002
        if not return_dict:
            return (prediction_scores, seq_relationship_score) + outputs[2:]

        return TFMobileBertForPreTrainingOutput(
            prediction_logits=prediction_scores,
            seq_relationship_logits=seq_relationship_score,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1003
1004
1005


@add_start_docstrings("""MobileBert Model with a `language modeling` head on top. """, MOBILEBERT_START_DOCSTRING)
1006
class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss):
Vasily Shamporov's avatar
Vasily Shamporov committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
        self.mlm = TFMobileBertMLMHead(config, name="mlm___cls")

    def get_output_embeddings(self):
        return self.mobilebert.embeddings

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1017
1018
1019
1020
1021
1022
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/mobilebert-uncased",
        output_type=TFMaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    def call(
        self,
        inputs=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1033
        return_dict=None,
1034
1035
1036
        labels=None,
        training=False,
    ):
Vasily Shamporov's avatar
Vasily Shamporov committed
1037
        r"""
1038
        labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1039
1040
1041
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Vasily Shamporov's avatar
Vasily Shamporov committed
1042
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1043
        return_dict = return_dict if return_dict is not None else self.mobilebert.return_dict
1044
        if isinstance(inputs, (tuple, list)):
Sylvain Gugger's avatar
Sylvain Gugger committed
1045
1046
1047
            labels = inputs[9] if len(inputs) > 9 else labels
            if len(inputs) > 9:
                inputs = inputs[:9]
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
        elif isinstance(inputs, (dict, BatchEncoding)):
            labels = inputs.pop("labels", labels)

        outputs = self.mobilebert(
            inputs,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
Sylvain Gugger's avatar
Sylvain Gugger committed
1060
            return_dict=return_dict,
1061
1062
            training=training,
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1063
1064

        sequence_output = outputs[0]
1065
        prediction_scores = self.mlm(sequence_output, training=training)
Vasily Shamporov's avatar
Vasily Shamporov committed
1066

Sylvain Gugger's avatar
Sylvain Gugger committed
1067
        loss = None if labels is None else self.compute_loss(labels, prediction_scores)
Vasily Shamporov's avatar
Vasily Shamporov committed
1068

Sylvain Gugger's avatar
Sylvain Gugger committed
1069
1070
1071
1072
1073
        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TFMaskedLMOutput(
Lysandre's avatar
Lysandre committed
1074
1075
1076
1077
            loss=loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
Sylvain Gugger's avatar
Sylvain Gugger committed
1078
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099


class TFMobileBertOnlyNSPHead(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.seq_relationship = tf.keras.layers.Dense(2, name="seq_relationship")

    def call(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


@add_start_docstrings(
    """MobileBert Model with a `next sentence prediction (classification)` head on top. """,
    MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
1100
        self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls")
Vasily Shamporov's avatar
Vasily Shamporov committed
1101
1102

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1103
    @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
Vasily Shamporov's avatar
Vasily Shamporov committed
1104
1105
    def call(self, inputs, **kwargs):
        r"""
Lysandre's avatar
Lysandre committed
1106
        Return:
Vasily Shamporov's avatar
Vasily Shamporov committed
1107

Lysandre's avatar
Lysandre committed
1108
        Examples::
Vasily Shamporov's avatar
Vasily Shamporov committed
1109

Lysandre's avatar
Lysandre committed
1110
1111
            >>> import tensorflow as tf
            >>> from transformers import MobileBertTokenizer, TFMobileBertForNextSentencePrediction
Vasily Shamporov's avatar
Vasily Shamporov committed
1112

Lysandre's avatar
Lysandre committed
1113
1114
            >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
            >>> model = TFMobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased')
Vasily Shamporov's avatar
Vasily Shamporov committed
1115

Lysandre's avatar
Lysandre committed
1116
1117
1118
            >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
            >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
            >>> encoding = tokenizer(prompt, next_sentence, return_tensors='tf')
Vasily Shamporov's avatar
Vasily Shamporov committed
1119

Lysandre's avatar
Lysandre committed
1120
            >>> logits = model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'])[0]
Vasily Shamporov's avatar
Vasily Shamporov committed
1121
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1122
1123
        return_dict = kwargs.get("return_dict")
        return_dict = return_dict if return_dict is not None else self.mobilebert.return_dict
Vasily Shamporov's avatar
Vasily Shamporov committed
1124
1125
1126
1127
1128
        outputs = self.mobilebert(inputs, **kwargs)

        pooled_output = outputs[1]
        seq_relationship_score = self.cls(pooled_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
1129
1130
        if not return_dict:
            return (seq_relationship_score,) + outputs[2:]
Vasily Shamporov's avatar
Vasily Shamporov committed
1131

Sylvain Gugger's avatar
Sylvain Gugger committed
1132
        return TFNextSentencePredictorOutput(
Lysandre's avatar
Lysandre committed
1133
1134
1135
            logits=seq_relationship_score,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
Sylvain Gugger's avatar
Sylvain Gugger committed
1136
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155


@add_start_docstrings(
    """MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.num_labels = config.num_labels

        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
        self.classifier = tf.keras.layers.Dense(
            config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
        )

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING)
Sylvain Gugger's avatar
Sylvain Gugger committed
1156
1157
1158
1159
1160
1161
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/mobilebert-uncased",
        output_type=TFSequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Vasily Shamporov's avatar
Vasily Shamporov committed
1162
1163
    def call(
        self,
1164
        inputs=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
1165
1166
1167
1168
1169
1170
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1171
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1172
        return_dict=None,
1173
        labels=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
1174
1175
1176
        training=False,
    ):
        r"""
1177
        labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
1178
1179
1180
1181
1182
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1183
        return_dict = return_dict if return_dict is not None else self.mobilebert.return_dict
1184
        if isinstance(inputs, (tuple, list)):
Sylvain Gugger's avatar
Sylvain Gugger committed
1185
1186
1187
            labels = inputs[9] if len(inputs) > 9 else labels
            if len(inputs) > 9:
                inputs = inputs[:9]
1188
1189
        elif isinstance(inputs, (dict, BatchEncoding)):
            labels = inputs.pop("labels", labels)
Vasily Shamporov's avatar
Vasily Shamporov committed
1190
1191

        outputs = self.mobilebert(
1192
            inputs,
Vasily Shamporov's avatar
Vasily Shamporov committed
1193
1194
1195
1196
1197
1198
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1199
            output_hidden_states=output_hidden_states,
Sylvain Gugger's avatar
Sylvain Gugger committed
1200
            return_dict=return_dict,
Vasily Shamporov's avatar
Vasily Shamporov committed
1201
1202
1203
1204
1205
1206
1207
1208
            training=training,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output, training=training)
        logits = self.classifier(pooled_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
1209
        loss = None if labels is None else self.compute_loss(labels, logits)
Vasily Shamporov's avatar
Vasily Shamporov committed
1210

Sylvain Gugger's avatar
Sylvain Gugger committed
1211
1212
1213
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output
Vasily Shamporov's avatar
Vasily Shamporov committed
1214

Sylvain Gugger's avatar
Sylvain Gugger committed
1215
        return TFSequenceClassifierOutput(
Lysandre's avatar
Lysandre committed
1216
1217
1218
1219
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
Sylvain Gugger's avatar
Sylvain Gugger committed
1220
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238


@add_start_docstrings(
    """MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.num_labels = config.num_labels

        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
        self.qa_outputs = tf.keras.layers.Dense(
            config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
        )

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING)
Sylvain Gugger's avatar
Sylvain Gugger committed
1239
1240
1241
1242
1243
1244
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/mobilebert-uncased",
        output_type=TFQuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Vasily Shamporov's avatar
Vasily Shamporov committed
1245
1246
    def call(
        self,
1247
        inputs=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
1248
1249
1250
1251
1252
1253
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1254
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1255
        return_dict=None,
1256
1257
        start_positions=None,
        end_positions=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
1258
1259
1260
        training=False,
    ):
        r"""
1261
        start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
1262
1263
1264
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
1265
        end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
1266
1267
1268
1269
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1270
        return_dict = return_dict if return_dict is not None else self.mobilebert.return_dict
1271
        if isinstance(inputs, (tuple, list)):
Sylvain Gugger's avatar
Sylvain Gugger committed
1272
1273
1274
1275
            start_positions = inputs[9] if len(inputs) > 9 else start_positions
            end_positions = inputs[10] if len(inputs) > 10 else end_positions
            if len(inputs) > 9:
                inputs = inputs[:9]
1276
1277
1278
1279
        elif isinstance(inputs, (dict, BatchEncoding)):
            start_positions = inputs.pop("start_positions", start_positions)
            end_positions = inputs.pop("end_positions", start_positions)

Vasily Shamporov's avatar
Vasily Shamporov committed
1280
        outputs = self.mobilebert(
1281
            inputs,
Vasily Shamporov's avatar
Vasily Shamporov committed
1282
1283
1284
1285
1286
1287
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1288
            output_hidden_states=output_hidden_states,
Sylvain Gugger's avatar
Sylvain Gugger committed
1289
            return_dict=return_dict,
Vasily Shamporov's avatar
Vasily Shamporov committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
            training=training,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = tf.split(logits, 2, axis=-1)
        start_logits = tf.squeeze(start_logits, axis=-1)
        end_logits = tf.squeeze(end_logits, axis=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1300
        loss = None
Vasily Shamporov's avatar
Vasily Shamporov committed
1301
1302
1303
        if start_positions is not None and end_positions is not None:
            labels = {"start_position": start_positions}
            labels["end_position"] = end_positions
Sylvain Gugger's avatar
Sylvain Gugger committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
            loss = self.compute_loss(labels, (start_logits, end_logits))

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TFQuestionAnsweringModelOutput(
            loss=loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335


@add_start_docstrings(
    """MobileBert Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
        self.classifier = tf.keras.layers.Dense(
            1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
        )

    @property
    def dummy_inputs(self):
Lysandre's avatar
Lysandre committed
1336
        """Dummy inputs to build the network.
Vasily Shamporov's avatar
Vasily Shamporov committed
1337
1338
1339
1340
1341
1342
1343

        Returns:
            tf.Tensor with dummy inputs
        """
        return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1344
1345
1346
1347
1348
1349
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/mobilebert-uncased",
        output_type=TFMultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Vasily Shamporov's avatar
Vasily Shamporov committed
1350
1351
1352
1353
1354
1355
1356
1357
1358
    def call(
        self,
        inputs,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1359
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1360
        return_dict=None,
1361
        labels=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
1362
1363
1364
        training=False,
    ):
        r"""
1365
        labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
        """
        if isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
            token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
            position_ids = inputs[3] if len(inputs) > 3 else position_ids
            head_mask = inputs[4] if len(inputs) > 4 else head_mask
            inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
            output_attentions = inputs[6] if len(inputs) > 6 else output_attentions
Joseph Liu's avatar
Joseph Liu committed
1378
            output_hidden_states = inputs[7] if len(inputs) > 7 else output_hidden_states
Sylvain Gugger's avatar
Sylvain Gugger committed
1379
1380
1381
            return_dict = inputs[8] if len(inputs) > 8 else return_dict
            labels = inputs[9] if len(inputs) > 9 else labels
            assert len(inputs) <= 10, "Too many inputs."
Vasily Shamporov's avatar
Vasily Shamporov committed
1382
1383
1384
1385
1386
1387
1388
1389
        elif isinstance(inputs, (dict, BatchEncoding)):
            input_ids = inputs.get("input_ids")
            attention_mask = inputs.get("attention_mask", attention_mask)
            token_type_ids = inputs.get("token_type_ids", token_type_ids)
            position_ids = inputs.get("position_ids", position_ids)
            head_mask = inputs.get("head_mask", head_mask)
            inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
            output_attentions = inputs.get("output_attentions", output_attentions)
Joseph Liu's avatar
Joseph Liu committed
1390
            output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
Sylvain Gugger's avatar
Sylvain Gugger committed
1391
            return_dict = inputs.get("return_dict", return_dict)
1392
            labels = inputs.get("labels", labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
1393
            assert len(inputs) <= 10, "Too many inputs."
Vasily Shamporov's avatar
Vasily Shamporov committed
1394
1395
        else:
            input_ids = inputs
Sylvain Gugger's avatar
Sylvain Gugger committed
1396
        return_dict = return_dict if return_dict is not None else self.mobilebert.return_dict
Vasily Shamporov's avatar
Vasily Shamporov committed
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

        if input_ids is not None:
            num_choices = shape_list(input_ids)[1]
            seq_length = shape_list(input_ids)[2]
        else:
            num_choices = shape_list(inputs_embeds)[1]
            seq_length = shape_list(inputs_embeds)[2]

        flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
        flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
        flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
        flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
        flat_inputs_embeds = (
            tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
            if inputs_embeds is not None
            else None
        )
Julien Plu's avatar
Julien Plu committed
1414
        outputs = self.mobilebert(
Vasily Shamporov's avatar
Vasily Shamporov committed
1415
1416
1417
1418
1419
1420
1421
            flat_input_ids,
            flat_attention_mask,
            flat_token_type_ids,
            flat_position_ids,
            head_mask,
            flat_inputs_embeds,
            output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1422
            output_hidden_states,
Sylvain Gugger's avatar
Sylvain Gugger committed
1423
            return_dict=return_dict,
Julien Plu's avatar
Julien Plu committed
1424
1425
            training=training,
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1426
1427
1428
1429
1430
        pooled_output = outputs[1]
        pooled_output = self.dropout(pooled_output, training=training)
        logits = self.classifier(pooled_output)
        reshaped_logits = tf.reshape(logits, (-1, num_choices))

Sylvain Gugger's avatar
Sylvain Gugger committed
1431
        loss = None if labels is None else self.compute_loss(labels, reshaped_logits)
Vasily Shamporov's avatar
Vasily Shamporov committed
1432

Sylvain Gugger's avatar
Sylvain Gugger committed
1433
1434
1435
1436
1437
        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TFMultipleChoiceModelOutput(
Lysandre's avatar
Lysandre committed
1438
1439
1440
1441
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
Sylvain Gugger's avatar
Sylvain Gugger committed
1442
        )
Vasily Shamporov's avatar
Vasily Shamporov committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461


@add_start_docstrings(
    """MobileBert Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.num_labels = config.num_labels

        self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
        self.classifier = tf.keras.layers.Dense(
            config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
        )

    @add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING)
Sylvain Gugger's avatar
Sylvain Gugger committed
1462
1463
1464
1465
1466
1467
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/mobilebert-uncased",
        output_type=TFTokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Vasily Shamporov's avatar
Vasily Shamporov committed
1468
1469
    def call(
        self,
1470
        inputs=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
1471
1472
1473
1474
1475
1476
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1477
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1478
        return_dict=None,
1479
        labels=None,
Vasily Shamporov's avatar
Vasily Shamporov committed
1480
1481
1482
        training=False,
    ):
        r"""
1483
        labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Vasily Shamporov's avatar
Vasily Shamporov committed
1484
1485
1486
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1487
        return_dict = return_dict if return_dict is not None else self.mobilebert.return_dict
1488
        if isinstance(inputs, (tuple, list)):
Sylvain Gugger's avatar
Sylvain Gugger committed
1489
1490
1491
            labels = inputs[9] if len(inputs) > 9 else labels
            if len(inputs) > 9:
                inputs = inputs[:9]
1492
1493
1494
        elif isinstance(inputs, (dict, BatchEncoding)):
            labels = inputs.pop("labels", labels)

Vasily Shamporov's avatar
Vasily Shamporov committed
1495
        outputs = self.mobilebert(
1496
            inputs,
Vasily Shamporov's avatar
Vasily Shamporov committed
1497
1498
1499
1500
1501
1502
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1503
            output_hidden_states=output_hidden_states,
Sylvain Gugger's avatar
Sylvain Gugger committed
1504
            return_dict=return_dict,
Vasily Shamporov's avatar
Vasily Shamporov committed
1505
1506
1507
1508
1509
1510
1511
1512
            training=training,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output, training=training)
        logits = self.classifier(sequence_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
1513
        loss = None if labels is None else self.compute_loss(labels, logits)
Vasily Shamporov's avatar
Vasily Shamporov committed
1514

Sylvain Gugger's avatar
Sylvain Gugger committed
1515
1516
1517
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output
Vasily Shamporov's avatar
Vasily Shamporov committed
1518

Sylvain Gugger's avatar
Sylvain Gugger committed
1519
        return TFTokenClassifierOutput(
Lysandre's avatar
Lysandre committed
1520
1521
1522
1523
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
Sylvain Gugger's avatar
Sylvain Gugger committed
1524
        )