run_tf_ner.py 11 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
Julien Plu's avatar
Julien Plu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition."""


import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
Julien Plu's avatar
Julien Plu committed
21
from dataclasses import dataclass, field
22
from importlib import import_module
Julien Plu's avatar
Julien Plu committed
23
from typing import Dict, List, Optional, Tuple
Aymeric Augustin's avatar
Aymeric Augustin committed
24

25
import numpy as np
Julien Plu's avatar
Julien Plu committed
26
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
27
from utils_ner import Split, TFTokenClassificationDataset, TokenClassificationTask
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29
from transformers import (
30
31
    AutoConfig,
    AutoTokenizer,
Julien Plu's avatar
Julien Plu committed
32
33
    EvalPrediction,
    HfArgumentParser,
34
    TFAutoModelForTokenClassification,
Julien Plu's avatar
Julien Plu committed
35
36
    TFTrainer,
    TFTrainingArguments,
Aymeric Augustin's avatar
Aymeric Augustin committed
37
)
38
from transformers.utils import logging as hf_logging
39
40


41
42
43
44
45
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()


Julien Plu's avatar
Julien Plu committed
46
logger = logging.getLogger(__name__)
47
48


Julien Plu's avatar
Julien Plu committed
49
50
51
52
53
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
54

Julien Plu's avatar
Julien Plu committed
55
56
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
57
    )
Julien Plu's avatar
Julien Plu committed
58
59
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
60
    )
61
62
63
    task_type: Optional[str] = field(
        default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"}
    )
Julien Plu's avatar
Julien Plu committed
64
65
66
67
68
69
70
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
71
72
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
73
    )
74
75


Julien Plu's avatar
Julien Plu committed
76
77
78
79
80
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
81

Julien Plu's avatar
Julien Plu committed
82
83
84
85
86
87
88
89
90
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
    )
    labels: Optional[str] = field(
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
    )
    max_seq_length: int = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
94
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Julien Plu's avatar
Julien Plu committed
95
96
97
98
99
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
100
101


Julien Plu's avatar
Julien Plu committed
102
103
104
105
106
107
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
108

109
    if (
Julien Plu's avatar
Julien Plu committed
110
111
112
113
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
114
    ):
115
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
116
117
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
            " --overwrite_output_dir to overcome."
118
        )
119

120
121
122
123
124
125
126
127
128
129
130
    module = import_module("tasks")

    try:
        token_classification_task_clazz = getattr(module, model_args.task_type)
        token_classification_task: TokenClassificationTask = token_classification_task_clazz()
    except AttributeError:
        raise ValueError(
            f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
            f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
        )

Julien Plu's avatar
Julien Plu committed
131
132
    # Setup logging
    logging.basicConfig(
133
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Julien Plu's avatar
Julien Plu committed
134
135
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
136
    )
Julien Plu's avatar
Julien Plu committed
137
    logger.info(
138
139
140
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
Julien Plu's avatar
Julien Plu committed
141
142
143
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
144

Julien Plu's avatar
Julien Plu committed
145
    # Prepare Token Classification task
146
    labels = token_classification_task.get_labels(data_args.labels)
Sylvain's avatar
Sylvain committed
147
    label_map: Dict[int, str] = dict(enumerate(labels))
Julien Plu's avatar
Julien Plu committed
148
    num_labels = len(labels)
Julien Plu's avatar
Julien Plu committed
149
150
151
152
153
154
155

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

156
    config = AutoConfig.from_pretrained(
Julien Plu's avatar
Julien Plu committed
157
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
158
        num_labels=num_labels,
Julien Plu's avatar
Julien Plu committed
159
160
161
162
163
164
165
166
        id2label=label_map,
        label2id={label: i for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
167
    )
168

Julien Plu's avatar
Julien Plu committed
169
170
171
172
173
174
    with training_args.strategy.scope():
        model = TFAutoModelForTokenClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
175
        )
176

Julien Plu's avatar
Julien Plu committed
177
178
    # Get datasets
    train_dataset = (
179
180
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
181
182
183
184
185
186
187
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
188
        )
Julien Plu's avatar
Julien Plu committed
189
190
191
192
        if training_args.do_train
        else None
    )
    eval_dataset = (
193
194
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
195
196
197
198
199
200
201
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
202
        )
Julien Plu's avatar
Julien Plu committed
203
204
205
        if training_args.do_eval
        else None
    )
206

Julien Plu's avatar
Julien Plu committed
207
208
209
210
211
212
213
214
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)
        batch_size, seq_len = preds.shape
        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
215
                if label_ids[i, j] != -100:
Julien Plu's avatar
Julien Plu committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)

        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset.get_dataset() if train_dataset else None,
        eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
        compute_metrics=compute_metrics,
    )
238

Julien Plu's avatar
Julien Plu committed
239
240
241
242
243
    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)
244
245

    # Evaluation
Julien Plu's avatar
Julien Plu committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
264
265
        test_dataset = TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
266
267
268
269
270
271
272
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
273
        )
274

Julien Plu's avatar
Julien Plu committed
275
276
277
278
279
        predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
        preds_list, labels_list = align_predictions(predictions, label_ids)
        report = classification_report(labels_list, preds_list)

        logger.info("\n%s", report)
280

Julien Plu's avatar
Julien Plu committed
281
        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
282

Julien Plu's avatar
Julien Plu committed
283
284
        with open(output_test_results_file, "w") as writer:
            writer.write("%s\n" % report)
285

Julien Plu's avatar
Julien Plu committed
286
287
288
289
290
        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")

        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
291
292
293
294
295
296
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

Julien Plu's avatar
Julien Plu committed
297
                        if not preds_list[example_id]:
298
                            example_id += 1
Julien Plu's avatar
Julien Plu committed
299
300
301
                    elif preds_list[example_id]:
                        output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"

302
303
                        writer.write(output_line)
                    else:
Julien Plu's avatar
Julien Plu committed
304
305
306
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

    return results
307
308
309


if __name__ == "__main__":
Julien Plu's avatar
Julien Plu committed
310
    main()