test_modeling_patchtst.py 14.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch PatchTST model. """

import inspect
import random
import tempfile
import unittest

from huggingface_hub import hf_hub_download

from transformers import is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


TOLERANCE = 1e-4

if is_torch_available():
    import torch

    from transformers import (
        MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING,
        MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING,
        PatchTSTConfig,
        PatchTSTForClassification,
        PatchTSTForPrediction,
        PatchTSTForPretraining,
        PatchTSTForRegression,
        PatchTSTModel,
    )


@require_torch
class PatchTSTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        prediction_length=7,
        context_length=14,
        patch_length=5,
        patch_stride=5,
        num_input_channels=1,
        num_time_features=1,
        is_training=True,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        distil=False,
        seed=42,
        num_targets=2,
        mask_type="random",
        random_mask_ratio=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.prediction_length = prediction_length
        self.context_length = context_length
        self.patch_length = patch_length
        self.patch_stride = patch_stride
        self.num_input_channels = num_input_channels
        self.num_time_features = num_time_features
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.mask_type = mask_type
        self.random_mask_ratio = random_mask_ratio

        self.seed = seed
        self.num_targets = num_targets
        self.distil = distil
        self.num_patches = (max(self.context_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
        # define seq_length so that it can pass the test_attention_outputs
        self.seq_length = self.num_patches

    def get_config(self):
        return PatchTSTConfig(
            prediction_length=self.prediction_length,
            patch_length=self.patch_length,
            patch_stride=self.patch_stride,
            num_input_channels=self.num_input_channels,
            d_model=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            context_length=self.context_length,
            activation_function=self.hidden_act,
            seed=self.seed,
            num_targets=self.num_targets,
            mask_type=self.mask_type,
            random_mask_ratio=self.random_mask_ratio,
        )

    def prepare_patchtst_inputs_dict(self, config):
        _past_length = config.context_length
        # bs, num_input_channels, num_patch, patch_len

        # [bs x seq_len x num_input_channels]
        past_values = floats_tensor([self.batch_size, _past_length, self.num_input_channels])

        future_values = floats_tensor([self.batch_size, config.prediction_length, self.num_input_channels])

        inputs_dict = {
            "past_values": past_values,
            "future_values": future_values,
        }
        return inputs_dict

    def prepare_config_and_inputs(self):
        config = self.get_config()
        inputs_dict = self.prepare_patchtst_inputs_dict(config)
        return config, inputs_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict


@require_torch
class PatchTSTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            PatchTSTModel,
            PatchTSTForPrediction,
            PatchTSTForPretraining,
            PatchTSTForClassification,
            PatchTSTForRegression,
        )
        if is_torch_available()
        else ()
    )

    pipeline_model_mapping = {"feature-extraction": PatchTSTModel} if is_torch_available() else {}
    is_encoder_decoder = False
    test_pruning = False
    test_head_masking = False
    test_missing_keys = True
    test_torchscript = False
    test_inputs_embeds = False
    test_model_common_attributes = False

    test_resize_embeddings = True
    test_resize_position_embeddings = False
    test_mismatched_shapes = True
    test_model_parallel = False
    has_attentions = True

    def setUp(self):
        self.model_tester = PatchTSTModelTester(self)
        self.config_tester = ConfigTester(
            self,
            config_class=PatchTSTConfig,
            has_text_modality=False,
            prediction_length=self.model_tester.prediction_length,
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        #  if PatchTSTForPretraining
        if model_class == PatchTSTForPretraining:
            inputs_dict.pop("future_values")
        # else if classification model:
        elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING):
            rng = random.Random(self.model_tester.seed)
            labels = ids_tensor([self.model_tester.batch_size], self.model_tester.num_targets, rng=rng)
            inputs_dict["target_values"] = labels
            inputs_dict.pop("future_values")
        elif model_class in get_values(MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING):
            rng = random.Random(self.model_tester.seed)
            target_values = floats_tensor([self.model_tester.batch_size, self.model_tester.num_targets], rng=rng)
            inputs_dict["target_values"] = target_values
            inputs_dict.pop("future_values")
        return inputs_dict

    def test_save_load_strict(self):
        config, _ = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            num_patch = self.model_tester.num_patches
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [num_patch, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    @unittest.skip(reason="we have no tokens embeddings")
    def test_resize_tokens_embeddings(self):
        pass

    def test_model_main_input_name(self):
        model_signature = inspect.signature(getattr(PatchTSTModel, "forward"))
        # The main input is the name of the argument after `self`
        observed_main_input_name = list(model_signature.parameters.keys())[1]
        self.assertEqual(PatchTSTModel.main_input_name, observed_main_input_name)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model_class == PatchTSTForPretraining:
                expected_arg_names = [
                    "past_values",
                    "past_observed_mask",
                ]
            elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING) or model_class in get_values(
                MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING
            ):
                expected_arg_names = ["past_values", "target_values", "past_observed_mask"]
            else:
                expected_arg_names = [
                    "past_values",
                    "past_observed_mask",
                    "future_values",
                ]

            expected_arg_names.extend(
                [
                    "output_hidden_states",
                    "output_attentions",
                    "return_dict",
                ]
            )

            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    @is_flaky()
    def test_retain_grad_hidden_states_attentions(self):
        super().test_retain_grad_hidden_states_attentions()


def prepare_batch(repo_id="hf-internal-testing/etth1-hourly-batch", file="train-batch.pt"):
    file = hf_hub_download(repo_id=repo_id, filename=file, repo_type="dataset")
    batch = torch.load(file, map_location=torch_device)
    return batch


# Note: Pretrained model is not yet downloadable.
@require_torch
@slow
class PatchTSTModelIntegrationTests(unittest.TestCase):
    # Publishing of pretrained weights are under internal review. Pretrained model is not yet downloadable.
    def test_pretrain_head(self):
        model = PatchTSTForPretraining.from_pretrained("namctin/patchtst_etth1_pretrain").to(torch_device)
        batch = prepare_batch()

        torch.manual_seed(0)
        with torch.no_grad():
            output = model(past_values=batch["past_values"].to(torch_device)).prediction_output
        num_patch = (
            max(model.config.context_length, model.config.patch_length) - model.config.patch_length
        ) // model.config.patch_stride + 1
        expected_shape = torch.Size([64, model.config.num_input_channels, num_patch, model.config.patch_length])
        self.assertEqual(output.shape, expected_shape)

        expected_slice = torch.tensor(
            [[[-0.0173]], [[-1.0379]], [[-0.1030]], [[0.3642]], [[0.1601]], [[-1.3136]], [[0.8780]]],
            device=torch_device,
        )
        self.assertTrue(torch.allclose(output[0, :7, :1, :1], expected_slice, atol=TOLERANCE))

    # Publishing of pretrained weights are under internal review. Pretrained model is not yet downloadable.
    def test_prediction_head(self):
        model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast").to(torch_device)
        batch = prepare_batch(file="test-batch.pt")

        torch.manual_seed(0)
        with torch.no_grad():
            output = model(
                past_values=batch["past_values"].to(torch_device),
                future_values=batch["future_values"].to(torch_device),
            ).prediction_outputs
        expected_shape = torch.Size([64, model.config.prediction_length, model.config.num_input_channels])
        self.assertEqual(output.shape, expected_shape)

        expected_slice = torch.tensor(
            [[0.5142, 0.6928, 0.6118, 0.5724, -0.3735, -0.1336, -0.7124]],
            device=torch_device,
        )
        self.assertTrue(torch.allclose(output[0, :1, :7], expected_slice, atol=TOLERANCE))

    def test_prediction_generation(self):
        model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast").to(torch_device)
        batch = prepare_batch(file="test-batch.pt")

        torch.manual_seed(0)
        with torch.no_grad():
            outputs = model.generate(past_values=batch["past_values"].to(torch_device))
        expected_shape = torch.Size((64, 1, model.config.prediction_length, model.config.num_input_channels))

        self.assertEqual(outputs.sequences.shape, expected_shape)

        expected_slice = torch.tensor(
            [[0.4075, 0.3716, 0.4786, 0.2842, -0.3107, -0.0569, -0.7489]],
            device=torch_device,
        )
        mean_prediction = outputs.sequences.mean(dim=1)
        self.assertTrue(torch.allclose(mean_prediction[0, -1:], expected_slice, atol=TOLERANCE))

    def test_regression_generation(self):
        model = PatchTSTForRegression.from_pretrained("namctin/patchtst_etth1_regression").to(torch_device)
        batch = prepare_batch(file="test-batch.pt")

        torch.manual_seed(0)
        with torch.no_grad():
            outputs = model.generate(past_values=batch["past_values"].to(torch_device))
        expected_shape = torch.Size((64, model.config.num_parallel_samples, model.config.num_targets))
        self.assertEqual(outputs.sequences.shape, expected_shape)

        expected_slice = torch.tensor(
            [[0.3228, 0.4320, 0.4591, 0.4066, -0.3461, 0.3094, -0.8426]],
            device=torch_device,
        )
        mean_prediction = outputs.sequences.mean(dim=1)

        self.assertTrue(torch.allclose(mean_prediction[0, -1:], expected_slice, rtol=TOLERANCE))