test_modeling_opt.py 19 KB
Newer Older
Younes Belkada's avatar
Younes Belkada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch OPT model. """


import copy
import tempfile
import unittest

import timeout_decorator  # noqa

24
from transformers import OPTConfig, is_torch_available
25
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
Younes Belkada's avatar
Younes Belkada committed
26
27
28
29
30
31
32
33
34

from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

35
36
37
38
39
40
41
    from transformers import (
        GPT2Tokenizer,
        OPTForCausalLM,
        OPTForQuestionAnswering,
        OPTForSequenceClassification,
        OPTModel,
    )
Younes Belkada's avatar
Younes Belkada committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


def prepare_opt_inputs_dict(
    config,
    input_ids,
    decoder_input_ids=None,
    attention_mask=None,
    decoder_attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "head_mask": head_mask,
    }


class OPTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
72
        num_hidden_layers=5,
Younes Belkada's avatar
Younes Belkada committed
73
74
75
76
77
78
79
80
81
82
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        embed_dim=16,
83
        num_labels=3,
Younes Belkada's avatar
Younes Belkada committed
84
        word_embed_proj_dim=16,
85
        type_sequence_label_size=2,
Younes Belkada's avatar
Younes Belkada committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.embed_dim = embed_dim
105
106
        self.num_labels = num_labels
        self.type_sequence_label_size = type_sequence_label_size
Younes Belkada's avatar
Younes Belkada committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        self.word_embed_proj_dim = word_embed_proj_dim
        self.is_encoder_decoder = False

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.get_config()
        inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def get_config(self):
        return OPTConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            embed_dim=self.embed_dim,
            is_encoder_decoder=False,
            word_embed_proj_dim=self.word_embed_proj_dim,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        config.max_position_embeddings = 100
        return config

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = OPTModel(config=config).to(torch_device).eval()

        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
        head_mask = inputs_dict["head_mask"]

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))


@require_torch
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
187
188
189
190
191
    all_model_classes = (
        (OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering)
        if is_torch_available()
        else ()
    )
Younes Belkada's avatar
Younes Belkada committed
192
193
    all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else ()
    is_encoder_decoder = False
194
    fx_compatible = True
Younes Belkada's avatar
Younes Belkada committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    test_pruning = False
    test_missing_keys = False

    def setUp(self):
        self.model_tester = OPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=OPTConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in (OPTModel,):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = OPTForCausalLM(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def test_opt_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = OPTForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_opt_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = OPTForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

Younes Belkada's avatar
Younes Belkada committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)


@require_torch
class OPTModelIntegrationTests(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
        model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
        input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
315

Younes Belkada's avatar
Younes Belkada committed
316
        with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
317
            output = model(input_ids=input_ids).last_hidden_state
318

Younes Belkada's avatar
Younes Belkada committed
319
        expected_shape = torch.Size((1, 11, 512))
Younes Belkada's avatar
Younes Belkada committed
320
        self.assertEqual(output.shape, expected_shape)
321
        # expected value works for CPU, as well as GPU (with TF32 disabled)
Younes Belkada's avatar
Younes Belkada committed
322
        expected_slice = torch.tensor(
323
324
325
326
327
            [
                [-0.28726277, -1.9241608, -0.3058734],
                [-1.2737825, -0.13332152, -0.18766522],
                [0.41159445, 0.1191957, -1.3107123],
            ],
328
            device=torch_device,
Younes Belkada's avatar
Younes Belkada committed
329
        )
330
        assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5)
Younes Belkada's avatar
Younes Belkada committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348


@require_torch
@slow
class OPTEmbeddingsTest(unittest.TestCase):
    def setUp(self):
        super().setUp()
        self.path_model = "facebook/opt-350m"

    def test_load_model(self):
        try:
            _ = OPTForCausalLM.from_pretrained(self.path_model)
        except BaseException:
            self.fail("Failed loading model")

    def test_logits(self):
        model = OPTForCausalLM.from_pretrained(self.path_model)
        model = model.eval()
Younes Belkada's avatar
Younes Belkada committed
349
        tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
Younes Belkada's avatar
Younes Belkada committed
350
351
352
353
354
355
356

        prompts = [
            "Today is a beautiful day and I want to",
            "In the city of",
            "Paris is the capital of France and",
            "Computers and mobile phones have taken",
        ]
357
358
359
        # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
        inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False)
        logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1)
Younes Belkada's avatar
Younes Belkada committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        # logits_meta = torch.load(self.path_logits_meta)
        logits_meta = torch.Tensor(
            [
                [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
                [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
                [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
                [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
            ]
        )
        assert torch.allclose(logits, logits_meta, atol=1e-4)


@slow
class OPTGenerationTest(unittest.TestCase):
374
375
376
    @property
    def prompts(self):
        return [
Arthur's avatar
Arthur committed
377
            "Today is a beautiful day and I want",
Younes Belkada's avatar
Younes Belkada committed
378
379
380
381
            "In the city of",
            "Paris is the capital of France and",
            "Computers and mobile phones have taken",
        ]
382
383
384
385
386

    def test_generation_pre_attn_layer_norm(self):
        model_id = "facebook/opt-125m"

        EXPECTED_OUTPUTS = [
387
388
389
390
            "Today is a beautiful day and I want to",
            "In the city of New York, the city",
            "Paris is the capital of France and the capital",
            "Computers and mobile phones have taken over the",
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        ]

        predicted_outputs = []
        tokenizer = GPT2Tokenizer.from_pretrained(model_id)
        model = OPTForCausalLM.from_pretrained(model_id)

        for prompt in self.prompts:
            input_ids = tokenizer(prompt, return_tensors="pt").input_ids

            generated_ids = model.generate(input_ids, max_length=10)

            generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
            predicted_outputs += generated_string

        self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    def test_batch_generation(self):
        model_id = "facebook/opt-350m"

        tokenizer = GPT2Tokenizer.from_pretrained(model_id)
        model = OPTForCausalLM.from_pretrained(model_id)
        model.to(torch_device)

        tokenizer.padding_side = "left"

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a dork.\nI'm a little bit",
            "Today, I was in the middle of a conversation with a friend about the",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])

448
449
450
451
    def test_generation_post_attn_layer_norm(self):
        model_id = "facebook/opt-350m"

        EXPECTED_OUTPUTS = [
Arthur's avatar
Arthur committed
452
            "Today is a beautiful day and I want to",
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
            "In the city of San Francisco, the city",
            "Paris is the capital of France and the capital",
            "Computers and mobile phones have taken over the",
        ]

        predicted_outputs = []
        tokenizer = GPT2Tokenizer.from_pretrained(model_id)
        model = OPTForCausalLM.from_pretrained(model_id)

        for prompt in self.prompts:
            input_ids = tokenizer(prompt, return_tensors="pt").input_ids

            generated_ids = model.generate(input_ids, max_length=10)

            generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
            predicted_outputs += generated_string

        self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

    @require_torch_gpu
    def test_batched_nan_fp16(self):
        # a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations,
        # therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b.
        # please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details
        model_name = "facebook/opt-1.3b"
        tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left")

        model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda()
        model = model.eval()

        batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt")

        input_ids = batch["input_ids"].cuda()
        attention_mask = batch["attention_mask"].cuda()

        with torch.no_grad():
            outputs = model(input_ids, attention_mask=attention_mask)
            self.assertFalse(
                torch.isnan(outputs.logits[0]).any().item()
            )  # the first logits could contain NaNs if it fails