hubconf.py 9.25 KB
Newer Older
Ailing Zhang's avatar
Ailing Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import (BertForNextSentencePrediction,
                                              BertForMaskedLM,
                                              BertForMultipleChoice,
                                              BertForPreTraining,
                                              BertForQuestionAnswering,
                                              BertForSequenceClassification,
                                              )

dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex']


def bertTokenizer(*args, **kwargs):
    """
    Instantiate a BertTokenizer from a pre-trained/customized vocab file
    Args:
    pretrained_model_name_or_path: Path to pretrained model archive
                                   or one of pre-trained vocab configs below.
                                       * bert-base-uncased
                                       * bert-large-uncased
                                       * bert-base-cased
                                       * bert-large-cased
                                       * bert-base-multilingual-uncased
                                       * bert-base-multilingual-cased
                                       * bert-base-chinese
    Keyword args:
    cache_dir: an optional path to a specific directory to download and cache
               the pre-trained model weights.
               Default: None
    do_lower_case: Whether to lower case the input.
                   Only has an effect when do_wordpiece_only=False
                   Default: True
    do_basic_tokenize: Whether to do basic tokenization before wordpiece.
                       Default: True
    max_len: An artificial maximum length to truncate tokenized sequences to;
             Effective maximum length is always the minimum of this
             value (if specified) and the underlying BERT model's
             sequence length.
             Default: None
    never_split: List of tokens which will never be split during tokenization.
                 Only has an effect when do_wordpiece_only=False
                 Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]

    Example:
        >>> sentence = 'Hello, World!'
        >>> tokenizer = torch.hub.load('ailzhang/pytorch-pretrained-BERT:hubconf', 'BertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
        >>> toks = tokenizer.tokenize(sentence)
        ['Hello', '##,', 'World', '##!']
        >>> ids = tokenizer.convert_tokens_to_ids(toks)
        [8667, 28136, 1291, 28125]
    """
    tokenizer = BertTokenizer.from_pretrained(*args, **kwargs)
    return tokenizer


def bertForNextSentencePrediction(*args, **kwargs):
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.
    Params:
        pretrained_model_name_or_path: either:
            - a str with the name of a pre-trained model to load selected in the list of:
                . `bert-base-uncased`
                . `bert-large-uncased`
                . `bert-base-cased`
                . `bert-large-cased`
                . `bert-base-multilingual-uncased`
                . `bert-base-multilingual-cased`
                . `bert-base-chinese`
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `model.chkpt` a TensorFlow checkpoint
        from_tf: should we load the weights from a locally saved TensorFlow checkpoint
        cache_dir: an optional path to a folder in which the pre-trained models will be cached.
        state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
        *inputs, **kwargs: additional input for the specific Bert class
            (ex: num_labels for BertForSequenceClassification)
    """
    model = BertForNextSentencePrediction.from_pretrained(*args, **kwargs)
    return model


def bertForPreTraining(*args, **kwargs):
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.
    Params:
        pretrained_model_name_or_path: either:
            - a str with the name of a pre-trained model to load selected in the list of:
                . `bert-base-uncased`
                . `bert-large-uncased`
                . `bert-base-cased`
                . `bert-large-cased`
                . `bert-base-multilingual-uncased`
                . `bert-base-multilingual-cased`
                . `bert-base-chinese`
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `model.chkpt` a TensorFlow checkpoint
        from_tf: should we load the weights from a locally saved TensorFlow checkpoint
        cache_dir: an optional path to a folder in which the pre-trained models will be cached.
        state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
        *inputs, **kwargs: additional input for the specific Bert class
            (ex: num_labels for BertForSequenceClassification)

    """
    model = BertForPreTraining.from_pretrained(*args, **kwargs)
    return model


def bertForMaskedLM(*args, **kwargs):
    """
    BertForMaskedLM includes the BertModel Transformer followed by the (possibly)
    pre-trained masked language modeling head.
    Params:
        pretrained_model_name_or_path: either:
            - a str with the name of a pre-trained model to load selected in the list of:
                . `bert-base-uncased`
                . `bert-large-uncased`
                . `bert-base-cased`
                . `bert-large-cased`
                . `bert-base-multilingual-uncased`
                . `bert-base-multilingual-cased`
                . `bert-base-chinese`
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `model.chkpt` a TensorFlow checkpoint
        from_tf: should we load the weights from a locally saved TensorFlow checkpoint
        cache_dir: an optional path to a folder in which the pre-trained models will be cached.
        state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
        *inputs, **kwargs: additional input for the specific Bert class
            (ex: num_labels for BertForSequenceClassification)
    """
    model = BertForMaskedLM.from_pretrained(*args, **kwargs)
    return model


#def bertForSequenceClassification(*args, **kwargs):
#    model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
#    return model


#def bertForMultipleChoice(*args, **kwargs):
#    model = BertForMultipleChoice.from_pretrained(*args, **kwargs)
#    return model


def bertForQuestionAnswering(*args, **kwargs):
    """
    BertForQuestionAnswering is a fine-tuning model that includes BertModel with
    a token-level classifiers on top of the full sequence of last hidden states.
    Params:
        pretrained_model_name_or_path: either:
            - a str with the name of a pre-trained model to load selected in the list of:
                . `bert-base-uncased`
                . `bert-large-uncased`
                . `bert-base-cased`
                . `bert-large-cased`
                . `bert-base-multilingual-uncased`
                . `bert-base-multilingual-cased`
                . `bert-base-chinese`
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `model.chkpt` a TensorFlow checkpoint
        from_tf: should we load the weights from a locally saved TensorFlow checkpoint
        cache_dir: an optional path to a folder in which the pre-trained models will be cached.
        state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
        *inputs, **kwargs: additional input for the specific Bert class
            (ex: num_labels for BertForSequenceClassification)
    """
    model = BertForQuestionAnswering.from_pretrained(*args, **kwargs)
    return model