test_modeling_fsmt.py 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import timeout_decorator  # noqa

from parameterized import parameterized
from transformers import is_torch_available
23
from transformers.file_utils import cached_property
24
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
25
26

from .test_configuration_common import ConfigTester
27
from .test_generation_utils import GenerationTesterMixin
28
29
30
31
32
33
34
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

    from transformers import FSMTConfig, FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
35
    from transformers.models.fsmt.modeling_fsmt import (
36
37
38
39
40
        SinusoidalPositionalEmbedding,
        _prepare_fsmt_decoder_inputs,
        invert_mask,
        shift_tokens_right,
    )
41
    from transformers.pipelines import TranslationPipeline
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


@require_torch
class ModelTester:
    def __init__(
        self,
        parent,
    ):
        self.parent = parent
        self.src_vocab_size = 99
        self.tgt_vocab_size = 99
        self.langs = ["ru", "en"]
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = False
        self.use_labels = False
        self.hidden_size = 16
        self.num_hidden_layers = 2
        self.num_attention_heads = 4
        self.intermediate_size = 4
        self.hidden_act = "relu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 20
        self.bos_token_id = 0
        self.pad_token_id = 1
        self.eos_token_id = 2
        torch.manual_seed(0)

        # hack needed for modeling_common tests - despite not really having this attribute in this model
        self.vocab_size = self.src_vocab_size

74
    def prepare_config_and_inputs(self):
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = 2  # Eos Token

        config = FSMTConfig(
            vocab_size=self.src_vocab_size,  # hack needed for common tests
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
        )
        inputs_dict = prepare_fsmt_inputs_dict(config, input_ids)
        return config, inputs_dict

102
103
104
105
106
107
108
    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"]
        inputs_dict["decoder_attention_mask"] = inputs_dict["attention_mask"]
        inputs_dict["use_cache"] = False
        return config, inputs_dict

109
110
111
112
113

def prepare_fsmt_inputs_dict(
    config,
    input_ids,
    attention_mask=None,
114
115
    head_mask=None,
    decoder_head_mask=None,
116
117
118
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
119
120
121
122
    if head_mask is None:
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
    if decoder_head_mask is None:
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
123
124
125
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
126
127
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
128
129
130
131
    }


@require_torch
132
class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
133
134
135
136
    all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else ()
    is_encoder_decoder = True
    test_pruning = False
137
    test_missing_keys = False
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    def setUp(self):
        self.model_tester = ModelTester(self)
        self.langs = ["en", "ru"]
        config = {
            "langs": self.langs,
            "src_vocab_size": 10,
            "tgt_vocab_size": 20,
        }
        # XXX: hack to appease to all other models requiring `vocab_size`
        config["vocab_size"] = 99  # no such thing in FSMT
        self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config)

    def test_config(self):
        self.config_tester.run_common_tests()

    # XXX: override test_model_common_attributes / different Embedding type
    def test_model_common_attributes(self):
156
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
157
158
159
160
161
162
163
164
165

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.modules.sparse.Embedding))

    def test_initialization_more(self):
166
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        model = FSMTModel(config)
        model.to(torch_device)
        model.eval()
        # test init
        # self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item())

        def _check_var(module):
            """Check that we initialized various parameters from N(0, config.init_std)."""
            self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2)

        _check_var(model.encoder.embed_tokens)
        _check_var(model.encoder.layers[0].self_attn.k_proj)
        _check_var(model.encoder.layers[0].fc1)
        # XXX: different std for fairseq version of SinusoidalPositionalEmbedding
        # self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2)

    def test_advanced_inputs(self):
184
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        config.use_cache = False
        inputs_dict["input_ids"][:, -2:] = config.pad_token_id
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, inputs_dict["input_ids"]
        )
        model = FSMTModel(config).to(torch_device).eval()

        decoder_features_with_created_mask = model(**inputs_dict)[0]
        decoder_features_with_passed_mask = model(
            decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict
        )[0]
        _assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask)
        useless_mask = torch.zeros_like(decoder_attn_mask)
        decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0]
        self.assertTrue(isinstance(decoder_features, torch.Tensor))  # no hidden states or attentions
        self.assertEqual(
            decoder_features.size(),
            (self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size),
        )
        if decoder_attn_mask.min().item() < -1e3:  # some tokens were masked
            self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item())

        # Test different encoder attention masks
        decoder_features_with_long_encoder_mask = model(
            inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long()
        )[0]
        _assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask)

213
    def test_save_load_missing_keys(self):
214
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
215

216
217
218
219
220
221
222
223
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

224
    @unittest.skip("Test has a segmentation fault on torch 1.8.0")
225
226
227
228
229
230
231
232
233
234
235
236
237
    def test_export_to_onnx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        model = FSMTModel(config).to(torch_device)
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
                model,
                (inputs_dict["input_ids"], inputs_dict["attention_mask"]),
                f"{tmpdirname}/fsmt_test.onnx",
                export_params=True,
                opset_version=12,
                input_names=["input_ids", "attention_mask"],
            )

238
239
240
241
242
243
244
245
246
247
248
249
    @unittest.skip("can't be implemented for FSMT due to dual vocab.")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip("Passing inputs_embeds not implemented for FSMT.")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("model weights aren't tied in FSMT.")
    def test_tie_model_weights(self):
        pass

250
251
252
    @unittest.skip("TODO: Decoder embeddings cannot be resized at the moment")
    def test_resize_embeddings_untied(self):
        pass
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367


@require_torch
class FSMTHeadTests(unittest.TestCase):
    src_vocab_size = 99
    tgt_vocab_size = 99
    langs = ["ru", "en"]

    def _get_config(self):
        return FSMTConfig(
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            eos_token_id=2,
            pad_token_id=1,
            bos_token_id=0,
        )

    def _get_config_and_data(self):
        input_ids = torch.tensor(
            [
                [71, 82, 18, 33, 46, 91, 2],
                [68, 34, 26, 58, 30, 82, 2],
                [5, 97, 17, 39, 94, 40, 2],
                [76, 83, 94, 25, 70, 78, 2],
                [87, 59, 41, 35, 48, 66, 2],
                [55, 13, 16, 58, 5, 2, 1],  # note padding
                [64, 27, 31, 51, 12, 75, 2],
                [52, 64, 86, 17, 83, 39, 2],
                [48, 61, 9, 24, 71, 82, 2],
                [26, 1, 60, 48, 22, 13, 2],
                [21, 5, 62, 28, 14, 76, 2],
                [45, 98, 37, 86, 59, 48, 2],
                [70, 70, 50, 9, 28, 0, 2],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        batch_size = input_ids.shape[0]
        config = self._get_config()
        return config, input_ids, batch_size

    def test_generate_beam_search(self):
        input_ids = torch.Tensor([[71, 82, 2], [68, 34, 2]]).long().to(torch_device)
        config = self._get_config()
        lm_model = FSMTForConditionalGeneration(config).to(torch_device)
        lm_model.eval()

        max_length = 5
        new_input_ids = lm_model.generate(
            input_ids.clone(),
            do_sample=True,
            num_return_sequences=1,
            num_beams=2,
            no_repeat_ngram_size=3,
            max_length=max_length,
        )
        self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length))

    def test_shift_tokens_right(self):
        input_ids = torch.Tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]]).long()
        shifted = shift_tokens_right(input_ids, 1)
        n_pad_before = input_ids.eq(1).float().sum()
        n_pad_after = shifted.eq(1).float().sum()
        self.assertEqual(shifted.shape, input_ids.shape)
        self.assertEqual(n_pad_after, n_pad_before - 1)
        self.assertTrue(torch.eq(shifted[:, 0], 2).all())

    def test_generate_fp16(self):
        config, input_ids, batch_size = self._get_config_and_data()
        attention_mask = input_ids.ne(1).to(torch_device)
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

    def test_dummy_inputs(self):
        config, *_ = self._get_config_and_data()
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        model(**model.dummy_inputs)

    def test_prepare_fsmt_decoder_inputs(self):
        config, *_ = self._get_config_and_data()
        input_ids = _long_tensor(([4, 4, 2]))
        decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]])
        ignore = float("-inf")
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, input_ids, decoder_input_ids
        )
        expected_causal_mask = torch.tensor(
            [[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]]  # never attend to the final token, because its pad
        ).to(input_ids.device)
        self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size())
        self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all())


def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
368
369
370
        if len(prefix) > 0:
            prefix = f"{prefix}: "
        raise AssertionError(f"{prefix}{a} != {b}")
371
372
373
374
375
376
377
378
379


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)


TOLERANCE = 1e-4


380
381
382
383
384
385
386
387
pairs = [
    ["en-ru"],
    ["ru-en"],
    ["en-de"],
    ["de-en"],
]


388
@require_torch
389
390
@require_sentencepiece
@require_tokenizers
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
class FSMTModelIntegrationTests(unittest.TestCase):
    tokenizers_cache = {}
    models_cache = {}
    default_mname = "facebook/wmt19-en-ru"

    @cached_property
    def default_tokenizer(self):
        return self.get_tokenizer(self.default_mname)

    @cached_property
    def default_model(self):
        return self.get_model(self.default_mname)

    def get_tokenizer(self, mname):
        if mname not in self.tokenizers_cache:
            self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname)
        return self.tokenizers_cache[mname]

    def get_model(self, mname):
        if mname not in self.models_cache:
            self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device)
            if torch_device == "cuda":
                self.models_cache[mname].half()
        return self.models_cache[mname]

    @slow
    def test_inference_no_head(self):
        tokenizer = self.default_tokenizer
        model = FSMTModel.from_pretrained(self.default_mname).to(torch_device)

        src_text = "My friend computer will translate this for me"
        input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"]
423
        input_ids = _long_tensor(input_ids).to(torch_device)
424
425
426
427
428
429
430
431
432
        inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids)
        with torch.no_grad():
            output = model(**inputs_dict)[0]
        expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size))
        self.assertEqual(output.shape, expected_shape)
        # expected numbers were generated when en-ru model, using just fairseq's model4.pt
        # may have to adjust if switched to a different checkpoint
        expected_slice = torch.tensor(
            [[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]]
433
        ).to(torch_device)
434
435
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))

436
    def translation_setup(self, pair):
437
438
439
440
441
442
443
444
445
446
        text = {
            "en": "Machine learning is great, isn't it?",
            "ru": "袦邪褕懈薪薪芯械 芯斜褍褔械薪懈械 - 褝褌芯 蟹写芯褉芯胁芯, 薪械 褌邪泻 谢懈?",
            "de": "Maschinelles Lernen ist gro脽artig, oder?",
        }

        src, tgt = pair.split("-")
        print(f"Testing {src} -> {tgt}")
        mname = f"facebook/wmt19-{pair}"

447
448
        src_text = text[src]
        tgt_text = text[tgt]
449
450
451

        tokenizer = self.get_tokenizer(mname)
        model = self.get_model(mname)
452
453
454
455
456
457
458
459
        return tokenizer, model, src_text, tgt_text

    @parameterized.expand(pairs)
    @slow
    def test_translation_direct(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)

        input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device)
460
461
462

        outputs = model.generate(input_ids)
        decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
463
464
465
466
467
468
469
470
471
472
        assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n"

    @parameterized.expand(pairs)
    @slow
    def test_translation_pipeline(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=device)
        output = pipeline([src_text])
        self.assertEqual([tgt_text], [x["translation_text"] for x in output])
473
474
475
476
477
478
479
480
481


@require_torch
class TestSinusoidalPositionalEmbeddings(unittest.TestCase):
    padding_idx = 1
    tolerance = 1e-4

    def test_basic(self):
        input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
482
        emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to(
483
484
485
486
487
488
489
490
            torch_device
        )
        emb = emb1(input_ids)
        desired_weights = torch.tensor(
            [
                [9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00],
                [1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00],
            ]
491
        ).to(torch_device)
492
493
494
495
496
497
498
        self.assertTrue(
            torch.allclose(emb[0], desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
        )

    def test_odd_embed_dim(self):
        # odd embedding_dim  is allowed
499
        SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device)
500
501

        # odd num_embeddings is allowed
502
        SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device)
503
504
505
506
507
508
509
510
511
512
513

    @unittest.skip("different from marian (needs more research)")
    def test_positional_emb_weights_against_marian(self):

        desired_weights = torch.tensor(
            [
                [0, 0, 0, 0, 0],
                [0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374],
                [0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258],
            ]
        )
514
        emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to(
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
            torch_device
        )
        weights = emb1.weights.data[:3, :5]
        # XXX: only the 1st and 3rd lines match - this is testing against
        # verbatim copy of SinusoidalPositionalEmbedding from fairseq
        self.assertTrue(
            torch.allclose(weights, desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
        )

        # test that forward pass is just a lookup, there is no ignore padding logic
        input_ids = torch.tensor(
            [[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device
        )
        no_cache_pad_zero = emb1(input_ids)[0]
        # XXX: only the 1st line matches the 3rd
        self.assertTrue(
            torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3)
        )