"tests/models/rt_detr/__init__.py" did not exist on "067395d5c56ef9026c442e691b6458ac196e3cf9"
test_tokenization_t5.py 27.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
import json
import os
17
import re
18
import tempfile
19
import unittest
thomwolf's avatar
thomwolf committed
20

Lysandre Debut's avatar
Lysandre Debut committed
21
from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, T5Tokenizer, T5TokenizerFast
22
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_seqio, require_tokenizers, slow
23
from transformers.utils import cached_property, is_tf_available, is_torch_available
thomwolf's avatar
thomwolf committed
24

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_tokenization_common import TokenizerTesterMixin
thomwolf's avatar
thomwolf committed
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
29

30
31
32
33
34
35
if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"
36

thomwolf's avatar
thomwolf committed
37

38
39
@require_sentencepiece
@require_tokenizers
40
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
41
    tokenizer_class = T5Tokenizer
42
43
    rust_tokenizer_class = T5TokenizerFast
    test_rust_tokenizer = True
44
    test_sentencepiece = True
thomwolf's avatar
thomwolf committed
45
46

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
47
        super().setUp()
thomwolf's avatar
thomwolf committed
48
49

        # We have a SentencePiece fixture for testing
50
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
51
52
        tokenizer.save_pretrained(self.tmpdirname)

53
54
55
56
57
58
59
60
61
62
63
64
65
    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "<s>"
        token_id = 1

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "<unk>")
        self.assertEqual(vocab_keys[1], "<s>")
66
        self.assertEqual(vocab_keys[1100], "<pad>")
67
68
69
        self.assertEqual(len(vocab_keys), 1_101)

    def test_vocab_size(self):
70
71
        self.assertEqual(self.get_tokenizer().vocab_size, 1000)
        self.assertEqual(len(self.get_tokenizer()), 1101)
72

thomwolf's avatar
thomwolf committed
73
    def test_full_tokenizer(self):
74
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
75

76
77
        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
thomwolf's avatar
thomwolf committed
78

79
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382])
thomwolf's avatar
thomwolf committed
80

81
        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
thomwolf's avatar
thomwolf committed
82
        self.assertListEqual(
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "é",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4])
thomwolf's avatar
thomwolf committed
110
111

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )
138

139
140
141
142
    @cached_property
    def t5_base_tokenizer(self):
        return T5Tokenizer.from_pretrained("t5-base")

143
144
145
146
147
    @cached_property
    def t5_base_tokenizer_fast(self):
        return T5TokenizerFast.from_pretrained("t5-base")

    def get_tokenizer(self, **kwargs) -> T5Tokenizer:
148
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
149
150

    def get_rust_tokenizer(self, **kwargs) -> T5TokenizerFast:
151
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is falsé."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

175
176
177
178
179
180
    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

181
    def test_prepare_batch(self):
182
        tokenizer = self.t5_base_tokenizer
183
184
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, tokenizer.eos_token_id]
185
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
186
        self.assertIsInstance(batch, BatchEncoding)
187
188
189
190
191
192

        if FRAMEWORK != "jax":
            result = list(batch.input_ids.numpy()[0])
        else:
            result = list(batch.input_ids.tolist()[0])

193
        self.assertListEqual(expected_src_tokens, result)
194

195
196
        self.assertEqual((2, 9), batch.input_ids.shape)
        self.assertEqual((2, 9), batch.attention_mask.shape)
197

198
    def test_empty_target_text(self):
199
        tokenizer = self.t5_base_tokenizer
200
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
201
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
202
203
204
205
206
207
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

208
    def test_max_length(self):
209
        tokenizer = self.t5_base_tokenizer
210
211
212
213
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
214
215
216
        targets = tokenizer(
            text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
        )
217
        self.assertEqual(32, targets["input_ids"].shape[1])
218
219

    def test_outputs_not_longer_than_maxlen(self):
220
        tokenizer = self.t5_base_tokenizer
221

222
223
        batch = tokenizer(
            ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK
224
225
        )
        self.assertIsInstance(batch, BatchEncoding)
226
227
228
        # Since T5 does NOT have a max input length,
        # this test should be changed to the following in Transformers v5:
        # self.assertEqual(batch.input_ids.shape, (2, 8001))
229
230
231
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_eos_in_input(self):
232
        tokenizer = self.t5_base_tokenizer
233
        src_text = ["A long paragraph for summarization. </s>"]
234
        tgt_text = ["Summary of the text. </s>"]
235
        expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, 1]
236
        expected_tgt_tokens = [20698, 13, 8, 1499, 5, 1]
237

238
        batch = tokenizer(src_text, text_target=tgt_text)
239

240
        self.assertEqual(expected_src_tokens, batch["input_ids"][0])
241
        self.assertEqual(expected_tgt_tokens, batch["labels"][0])
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def test_token_type_ids(self):
        src_text_1 = ["A first paragraph for summarization."]
        src_text_2 = ["A second paragraph for summarization."]

        fast_token_type_ids = self.t5_base_tokenizer_fast(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids
        slow_token_type_ids = self.t5_base_tokenizer(
            src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True
        ).token_type_ids

        self.assertEqual(slow_token_type_ids, fast_token_type_ids)
        self.assertEqual(len(slow_token_type_ids[0]), 18)

257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def test_fast_and_slow_same_result(self):
        src_text = "<pad> Today is <unk> nice day </s>"
        tgt_ids = [0, 1960, 19, 2, 1245, 239, 1]
        tgt_text = "<pad> Today is<unk> nice day</s>"

        fast_ids = self.t5_base_tokenizer_fast(src_text, add_special_tokens=False).input_ids
        slow_ids = self.t5_base_tokenizer(src_text, add_special_tokens=False).input_ids
        self.assertEqual(tgt_ids, fast_ids)
        self.assertEqual(tgt_ids, slow_ids)

        fast_text = self.t5_base_tokenizer_fast.decode(fast_ids)
        slow_text = self.t5_base_tokenizer.decode(fast_ids)
        self.assertEqual(tgt_text, fast_text)
        self.assertEqual(tgt_text, slow_text)
Lysandre Debut's avatar
Lysandre Debut committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                added_tokens = [f"<extra_id_{i}>" for i in range(100)] + [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
                )
                tokenizer_p = self.tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )

                p_output = tokenizer_p.encode("Hey this is a <special> token")
                r_output = tokenizer_r.encode("Hey this is a <special> token")
                cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertEqual(p_output, r_output)
                self.assertEqual(cr_output, r_output)
                self.assertTrue(special_token_id in p_output)
                self.assertTrue(special_token_id in r_output)
                self.assertTrue(special_token_id in cr_output)
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
        tokenizer_list = []
        if self.test_slow_tokenizer:
            tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))

        if self.test_rust_tokenizer:
            tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))

        for tokenizer_class, tokenizer_utils in tokenizer_list:
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(tmp_dir)

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file:
                    special_tokens_map = json.load(json_file)

                with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file:
                    tokenizer_config = json.load(json_file)

                added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(100)]

                special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]
                tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile:
                    json.dump(special_tokens_map, outfile)
                with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile:
                    json.dump(tokenizer_config, outfile)

                # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
                # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
                # "special_tokens_map.json" files
                tokenizer_without_change_in_init = tokenizer_class.from_pretrained(
                    tmp_dir,
                )
                self.assertIn(
                    "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
                )
                # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
                self.assertEqual(
                    ["an_additional_special_token"],
                    tokenizer_without_change_in_init.convert_ids_to_tokens(
                        tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
                    ),
                )

                # Now we test that we can change the value of additional_special_tokens in the from_pretrained
                new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)]
                tokenizer = tokenizer_class.from_pretrained(
                    tmp_dir,
                    additional_special_tokens=new_added_tokens,
                )

                self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
                self.assertEqual(
                    ["a_new_additional_special_token"],
                    tokenizer.convert_ids_to_tokens(
                        tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
                    ),
                )

363
364
365
366
367
368
369
    # overwritten from `test_tokenization_common` since T5 has no max length
    def test_pretrained_model_lists(self):
        # We should have at least one default checkpoint for each tokenizer
        # We should specify the max input length as well (used in some part to list the pretrained checkpoints)
        self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
        self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)

370
371
372
373
374
375
376
377
378
379
380
    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[31220, 7, 41, 14034, 801, 38, 3, 102, 63, 17, 127, 524, 18, 7031, 2032, 277, 11, 3, 102, 63, 17, 127, 524, 18, 2026, 17, 10761, 18, 7041, 61, 795, 879, 18, 19681, 4648, 7, 41, 12920, 382, 6, 350, 6383, 4949, 6, 2158, 12920, 382, 9, 6, 3, 4, 11160, 6, 2043, 17153, 279, 49, 17, 6, 3, 4, 434, 9688, 11439, 21, 6869, 10509, 17725, 41, 567, 9138, 61, 11, 6869, 10509, 11946, 41, 18207, 517, 61, 28, 147, 3538, 1220, 7140, 10761, 2250, 16, 910, 1220, 8024, 11, 1659, 1413, 32, 883, 2020, 344, 2215, 226, 6, 12901, 382, 127, 524, 11, 4738, 7, 127, 15390, 5, 1], [272, 24203, 19, 876, 12, 554, 18, 9719, 1659, 2647, 26352, 6497, 7, 45, 73, 9339, 400, 26, 1499, 57, 22801, 10760, 30, 321, 646, 11, 269, 2625, 16, 66, 7500, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [37, 1704, 4216, 3, 20400, 4418, 7, 147, 8, 19743, 1782, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}  # noqa: E501
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="t5-base",
            revision="5a7ff2d8f5117c194c7e32ec1ccbf04642cca99b",
        )
381
382
383
384

    def test_get_sentinel_tokens(self):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=10)
        sentinel_tokens = tokenizer.get_sentinel_tokens()
385
        self.assertEqual(len(sentinel_tokens), 10)
386
        self.assertListEqual(sorted(sentinel_tokens), sorted([f"<extra_id_{str(i)}>" for i in range(0, 10)]))
387
        self.assertTrue([re.search(r"<extra_id_\d+>", token) is not None for token in sentinel_tokens])
388
389
390

    def test_get_sentinel_token_ids(self):
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=10)
391
        self.assertListEqual(sorted(tokenizer.get_sentinel_token_ids()), sorted(range(1000, 1010)))
392
393
394
395

    def test_get_sentinel_tokens_for_fasttokenizer(self):
        tokenizer = T5TokenizerFast(SAMPLE_VOCAB, extra_ids=10)
        sentinel_tokens = tokenizer.get_sentinel_tokens()
396
        self.assertEqual(len(sentinel_tokens), 10)
397
        self.assertListEqual(sorted(sentinel_tokens), sorted([f"<extra_id_{str(i)}>" for i in range(0, 10)]))
398
        self.assertTrue([re.search(r"<extra_id_\d+>", token) is not None for token in sentinel_tokens])
399
400
401

    def test_get_sentinel_token_ids_for_fasttokenizer(self):
        tokenizer = T5TokenizerFast(SAMPLE_VOCAB, extra_ids=10)
402
        self.assertListEqual(sorted(tokenizer.get_sentinel_token_ids()), sorted(range(1000, 1010)))
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    def test_some_edge_cases(self):
        tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)

        sp_tokens = tokenizer.sp_model.encode("</s>>", out_type=str)
        self.assertEqual(sp_tokens, ["<", "/", "s", ">", ">"])
        tokens = tokenizer.tokenize("</s>>")
        self.assertNotEqual(sp_tokens, tokens)
        self.assertEqual(tokens, ["</s>", ">"])

        tokens = tokenizer.tokenize("")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))

        tokens = tokenizer.tokenize(" ")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str))

        tokens = tokenizer.tokenize("▁")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str))

        tokens = tokenizer.tokenize(" ▁")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str))

429
430
431
432
433
434
435
436
437
438

@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
    """
    A class that regroups important test to make sure that we properly handle the special tokens.
    """

    @classmethod
    def setUpClass(cls):
439
440
441
442
443
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=0, legacy=False)
        tokenizer.add_special_tokens(
            {"additional_special_tokens": [AddedToken("<extra_id_0>", rstrip=False, lstrip=False)]}
        )
        # TODO ArthurZ the above is necessary as addedTokens / intialization sucks. Trie is not correctly created
444
        # So the extra ids are split....
445
446
447
448
449
450
451
452
        cls.tokenizer = tokenizer

    def test_add_dummy_prefix(self):
        # make sure `'▁'` is prepended, and outputs match sp_model's
        # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute
        input_ids = self.tokenizer.encode(". Hello", add_special_tokens=False)
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode(". Hello")
453
        self.assertEqual(input_ids, [7] + sp_encode)
454
455
456
        tokens = self.tokenizer.tokenize(". Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

457
458
459
460
461
462
463
464
465
466
467
468
        tokens = self.tokenizer.tokenize("")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str))

        tokens = self.tokenizer.tokenize(" ")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str))

        tokens = self.tokenizer.tokenize("▁")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode("▁", out_type=str))

469
470
471
472
473
474
    def test_remove_extra_whitespaces(self):
        # make sure the extra spaces are eaten
        # sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute
        input_ids = self.tokenizer.encode("       . Hello", add_special_tokens=False)
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode("       . Hello")
475
        self.assertEqual(input_ids, [7] + sp_encode)
476
477
478
479
480
481
482
483
484
485
        tokens = self.tokenizer.tokenize(" . Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

        # `'▁'` is also a whitespace
        input_ids = self.tokenizer.encode("▁He is not")
        self.assertEqual(input_ids, [156, 46, 44, 2])
        tokens = self.tokenizer.tokenize("▁He is not")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not"])  # no extra space added

        input_ids = self.tokenizer.encode("▁He is not<extra_id_0>             ▁He")
486
487
        # here t5x does not eat with lstrip, so there is and extra ▁He in the original one
        self.assertEqual(input_ids, [156, 46, 44, 1001, 156, 2])
488
        tokens = self.tokenizer.tokenize("▁He is not<extra_id_0>              ▁He")
489
        self.assertEqual(tokens, ["▁He", "▁is", "▁not", "<extra_id_0>", "▁He"])  # spaces are eaten by spm
490
491
492
493
494
495
496
497
498
499
500
        # make sure that the output after the extra id is the same as if
        # extra_id was not there
        input_ids = self.tokenizer.encode("▁He is not             ▁He")
        self.assertEqual(input_ids, [156, 46, 44, 156, 2])
        tokens = self.tokenizer.tokenize("▁He is not              ▁He")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"])  # spaces are eaten by spm even if not start

    def test_character_after_special_token(self):
        # Make sure that `tokenizer.tokenize` is similar to
        # adding the equivalent special token to the vocab
        input_ids = self.tokenizer.encode("Hey <extra_id_0>I")
501
        self.assertEqual(input_ids, [156, 30, 1001, 100, 2])
502
503
504
505
        tokens = self.tokenizer.tokenize("Hey <extra_id_0>I")
        self.assertEqual(tokens, ["▁He", "y", "<extra_id_0>", "I"])

        input_ids = self.tokenizer.encode("Hello, <extra_id_0>,")
506
        self.assertEqual(input_ids, [156, 86, 20, 3, 1001, 3, 2])
507
508
509
510
511
        tokens = self.tokenizer.tokenize("Hello, <extra_id_0>,")
        self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<extra_id_0>", ","])

    def test_special_tokens_strip(self):
        input_ids = self.tokenizer.encode(" <extra_id_0> ,")
512
        self.assertEqual(input_ids, [1001, 7, 3, 2])
513
        tokens = self.tokenizer.tokenize(" <extra_id_0> ,")
514
515
        # spaces are not longer eaten by rstrip and lstrip
        self.assertEqual(tokens, ["<extra_id_0>", "▁", ","])
516
517
518

        # test with a begin of word like `▁He`
        input_ids = self.tokenizer.encode("No <extra_id_0> He")
519
        self.assertEqual(input_ids, [284, 1001, 156, 2])
520
521
        # spaces are eaten by rstrip / lstrip, so this is expected. Don't strip otherwise you break
        tokens = self.tokenizer.tokenize("No <extra_id_0> He")
522
        self.assertEqual(tokens, ["▁No", "<extra_id_0>", "▁He"])
523
524
525
526
527

        # Make sure this does not happen if we don't strip
        tokenizer = T5Tokenizer(SAMPLE_VOCAB, extra_ids=0)
        tokenizer.add_special_tokens({"bos_token": AddedToken("<bos>")})
        input_ids = tokenizer.encode("No <bos> He")
528
        self.assertEqual(input_ids, [284, 1001, 156, 2])
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        tokens = tokenizer.tokenize("No <bos> He")
        # the first `' '` after `'No'` is eaten by spm:
        self.assertEqual(tokenizer.sp_model.encode("No         ", out_type=str), ["▁No"])
        self.assertEqual(tokens, ["▁No", "<bos>", "▁He"])

    @require_seqio
    @unittest.skipIf(
        os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
        "RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
    )
    def test_integration_seqio(self):
        from datasets import load_dataset
        from seqio import SentencePieceVocabulary

        ds = load_dataset("xnli", "all_languages", split="train+test+validation")

545
        # TODO @ArthurZucker fix the 3 commented tests with #23909
546
547
548
549
550
551
552
553
        input_texts = [
            "Bonjour <extra_id_0>.",
            # "Bonjour<extra_id_0>.",  # this will fail. In T5 the special token has to be at the end.
            # because in T5 they add `_<extra_id_0>` to the vocab, not `<extra_id_0>`.
            "                   Hey <extra_id_0>I love you",
            # "Hey <extra_id_0> I love you", # this will fail, we strip left, to _I vs I
            # "Hey <extra_id_0>▁He", # this will fail for the same reason, we replace `_` then strip
        ]
554

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
        import tqdm

        # Test with umt5
        vocab_path = "gs://t5-data/vocabs/umt5.256000/sentencepiece.model"
        t5x_tokenizer = SentencePieceVocabulary(vocab_path, extra_ids=300)
        hf_tokenizer = T5Tokenizer.from_pretrained("google/umt5-small", legacy=False)
        for text in input_texts:
            self.assertEqual(
                hf_tokenizer.encode(text, add_special_tokens=False), t5x_tokenizer.tokenizer.tokenize(text), f"{text}"
            )
        for texts in tqdm.tqdm(ds["premise"]):
            for text in texts:
                self.assertEqual(
                    hf_tokenizer.encode(text, add_special_tokens=False),
                    t5x_tokenizer.tokenizer.tokenize(text),
                    f"{text}",
                )

        # Test with T5
        hf_tokenizer = T5Tokenizer.from_pretrained("t5-small")
        vocab_path = "gs://t5-data/vocabs/cc_all.32000/sentencepiece.model"
        t5x_tokenizer = SentencePieceVocabulary(vocab_path, extra_ids=300)
        for text in input_texts:
            self.assertEqual(
                hf_tokenizer.encode(text, add_special_tokens=False), t5x_tokenizer.tokenizer.tokenize(text), f"{text}"
            )
        for texts in tqdm.tqdm(ds["premise"]):
            for text in texts:
                self.assertEqual(
                    hf_tokenizer.encode(text, add_special_tokens=False),
                    t5x_tokenizer.tokenizer.tokenize(text),
                    f"{text}",
                )