test_modeling_vitdet.py 10.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViTDet model. """


import unittest

from transformers import VitDetConfig
from transformers.testing_utils import require_torch, torch_device
from transformers.utils import is_torch_available

from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

    from transformers import VitDetBackbone, VitDetModel


class VitDetModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope

        self.num_patches_one_direction = self.image_size // self.patch_size
        self.seq_length = (self.image_size // self.patch_size) ** 2

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return VitDetConfig(
            image_size=self.image_size,
93
            pretrain_image_size=self.image_size,
NielsRogge's avatar
NielsRogge committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = VitDetModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction),
        )

    def create_and_check_backbone(self, config, pixel_values, labels):
        model = VitDetBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify hidden states
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        self.parent.assertListEqual(
            list(result.feature_maps[0].shape),
            [self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction],
        )

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))
        self.parent.assertListEqual(model.channels, [config.hidden_size])

        # verify backbone works with out_features=None
        config.out_features = None
        model = VitDetBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(
            list(result.feature_maps[0].shape),
            [self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction],
        )

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)
        self.parent.assertListEqual(model.channels, [config.hidden_size])

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class VitDetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as VitDet does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (VitDetModel, VitDetBackbone) if is_torch_available() else ()
    pipeline_model_mapping = {"feature-extraction": VitDetModel} if is_torch_available() else {}

    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = VitDetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=VitDetConfig, has_text_modality=False, hidden_size=37)

178
179
180
181
182
183
184
    # TODO: Fix me (once this model gets more usage)
    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
    def test_cpu_offload(self):
        super().test_cpu_offload()

    # TODO: Fix me (once this model gets more usage)
    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
185
186
187
188
189
    def test_disk_offload_bin(self):
        super().test_disk_offload()

    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
    def test_disk_offload_safetensors(self):
190
191
192
193
194
195
196
        super().test_disk_offload()

    # TODO: Fix me (once this model gets more usage)
    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
    def test_model_parallelism(self):
        super().test_model_parallelism()

NielsRogge's avatar
NielsRogge committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="VitDet does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_stages = self.model_tester.num_hidden_layers
            self.assertEqual(len(hidden_states), expected_num_stages + 1)

            # VitDet's feature maps are of shape (batch_size, num_channels, height, width)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [
                    self.model_tester.num_patches_one_direction,
                    self.model_tester.num_patches_one_direction,
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    # overwrite since VitDet only supports retraining gradients of hidden states
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = self.has_attentions

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        hidden_states.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)

    @unittest.skip(reason="VitDet does not support feedforward chunking")
    def test_feed_forward_chunking(self):
        pass

    @unittest.skip(reason="VitDet does not have standalone checkpoints since it used as backbone in other models")
    def test_model_from_pretrained(self):
        pass


@require_torch
class VitDetBackboneTest(unittest.TestCase, BackboneTesterMixin):
    all_model_classes = (VitDetBackbone,) if is_torch_available() else ()
    config_class = VitDetConfig

    has_attentions = False

    def setUp(self):
        self.model_tester = VitDetModelTester(self)