test_modeling_segformer.py 15.8 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch SegFormer model. """


import inspect
import unittest

from transformers import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor


if is_torch_available():
    import torch

    from transformers import (
        MODEL_MAPPING,
        SegformerConfig,
        SegformerForImageClassification,
        SegformerForSemanticSegmentation,
        SegformerModel,
    )
    from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import SegformerFeatureExtractor


class SegformerConfigTester(ConfigTester):
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
        self.parent.assertTrue(hasattr(config, "hidden_sizes"))
        self.parent.assertTrue(hasattr(config, "num_attention_heads"))
        self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))


class SegformerModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=64,
        num_channels=3,
        num_encoder_blocks=4,
        depths=[2, 2, 2, 2],
        sr_ratios=[8, 4, 2, 1],
        hidden_sizes=[16, 32, 64, 128],
        downsampling_rates=[1, 4, 8, 16],
        num_attention_heads=[1, 2, 4, 8],
        is_training=True,
        use_labels=True,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.num_encoder_blocks = num_encoder_blocks
        self.sr_ratios = sr_ratios
        self.depths = depths
        self.hidden_sizes = hidden_sizes
        self.downsampling_rates = downsampling_rates
        self.num_attention_heads = num_attention_heads
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = SegformerConfig(
            image_size=self.image_size,
            num_channels=self.num_channels,
            num_encoder_blocks=self.num_encoder_blocks,
            depths=self.depths,
            hidden_sizes=self.hidden_sizes,
            num_attention_heads=self.num_attention_heads,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            initializer_range=self.initializer_range,
        )

        return config, pixel_values, labels

    def create_and_check_model(self, config, pixel_values, labels):
        model = SegformerModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)
        )

    def create_and_check_for_image_segmentation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = SegformerForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
136
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
NielsRogge's avatar
NielsRogge committed
137
138
139
        )
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(
140
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
NielsRogge's avatar
NielsRogge committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class SegformerModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            SegformerModel,
            SegformerForSemanticSegmentation,
            SegformerForImageClassification,
        )
        if is_torch_available()
        else ()
    )

    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = SegformerModelTester(self)
        self.config_tester = SegformerConfigTester(self, config_class=SegformerConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_image_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)

    @unittest.skip("SegFormer does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods")
    def test_model_common_attributes(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions

            expected_num_attentions = sum(self.model_tester.depths)
            self.assertEqual(len(attentions), expected_num_attentions)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions

            self.assertEqual(len(attentions), expected_num_attentions)

            # verify the first attentions (first block, first layer)
            expected_seq_len = (self.model_tester.image_size // 4) ** 2
            expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
            )

            # verify the last attentions (last block, last layer)
            expected_seq_len = (self.model_tester.image_size // 32) ** 2
            expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
            self.assertListEqual(
                list(attentions[-1].shape[-3:]),
                [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len],
            )
248
            out_len = len(outputs)
NielsRogge's avatar
NielsRogge committed
249
250
251
252
253
254
255
256
257
258

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

259
            self.assertEqual(out_len + 1, len(outputs))
NielsRogge's avatar
NielsRogge committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), expected_num_attentions)
            # verify the first attentions (first block, first layer)
            expected_seq_len = (self.model_tester.image_size // 4) ** 2
            expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = self.model_tester.num_encoder_blocks
            self.assertEqual(len(hidden_states), expected_num_layers)

            # verify the first hidden states (first block)
            self.assertListEqual(
                list(hidden_states[0].shape[-3:]),
                [
                    self.model_tester.hidden_sizes[0],
                    self.model_tester.image_size // 4,
                    self.model_tester.image_size // 4,
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(MODEL_MAPPING):
                continue
            # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
            # this can then be incorporated into _prepare_for_class in test_modeling_common.py
            if model_class.__name__ == "SegformerForSemanticSegmentation":
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
NielsRogge's avatar
NielsRogge committed
322
323
324
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
NielsRogge's avatar
NielsRogge committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @slow
    def test_model_from_pretrained(self):
        for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SegformerModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
class SegformerModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_image_segmentation_ade(self):
        # only resize + normalize
        feature_extractor = SegformerFeatureExtractor(
            image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
        )
        model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to(
            torch_device
        )

        image = prepare_img()
        encoded_inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = encoded_inputs.pixel_values.to(torch_device)

361
362
        with torch.no_grad():
            outputs = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
363

364
        expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
NielsRogge's avatar
NielsRogge committed
365
366
367
368
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [
369
370
371
                [[-4.6309, -4.6309, -4.7425], [-4.6309, -4.6309, -4.7425], [-4.7011, -4.7011, -4.8136]],
                [[-12.1391, -12.1391, -12.2858], [-12.1391, -12.1391, -12.2858], [-12.2309, -12.2309, -12.3758]],
                [[-12.5134, -12.5134, -12.6328], [-12.5134, -12.5134, -12.6328], [-12.5576, -12.5576, -12.6865]],
NielsRogge's avatar
NielsRogge committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
            ]
        ).to(torch_device)
        self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_image_segmentation_city(self):
        # only resize + normalize
        feature_extractor = SegformerFeatureExtractor(
            image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
        )
        model = SegformerForSemanticSegmentation.from_pretrained(
            "nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
        ).to(torch_device)

        image = prepare_img()
        encoded_inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = encoded_inputs.pixel_values.to(torch_device)

390
391
        with torch.no_grad():
            outputs = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
392

393
        expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
NielsRogge's avatar
NielsRogge committed
394
395
396
397
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [
398
399
400
                [[-13.5729, -13.5729, -13.6149], [-13.5729, -13.5729, -13.6149], [-13.6697, -13.6697, -13.7224]],
                [[-17.1638, -17.1638, -17.0022], [-17.1638, -17.1638, -17.0022], [-17.1754, -17.1754, -17.0358]],
                [[-3.6452, -3.6452, -3.5670], [-3.6452, -3.6452, -3.5670], [-3.5744, -3.5744, -3.5079]],
NielsRogge's avatar
NielsRogge committed
401
402
403
            ]
        ).to(torch_device)
        self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-1))