test_modeling_beit.py 22 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """


import inspect
import unittest

21
22
from datasets import load_dataset

NielsRogge's avatar
NielsRogge committed
23
24
25
26
27
28
29
30
31
32
33
34
35
from transformers import BeitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor


if is_torch_available():
    import torch
    from torch import nn

36
37
38
39
40
41
42
    from transformers import (
        MODEL_MAPPING,
        BeitForImageClassification,
        BeitForMaskedImageModeling,
        BeitForSemanticSegmentation,
        BeitModel,
    )
NielsRogge's avatar
NielsRogge committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, to_2tuple


if is_vision_available():
    from PIL import Image

    from transformers import BeitFeatureExtractor


class BeitModelTester:
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
64
        num_hidden_layers=4,
NielsRogge's avatar
NielsRogge committed
65
66
67
68
69
70
71
72
73
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
74
        out_indices=[0, 1, 2, 3],
NielsRogge's avatar
NielsRogge committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    ):
        self.parent = parent
        self.vocab_size = 100
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
94
        self.out_indices = out_indices
95
        self.num_labels = num_labels
NielsRogge's avatar
NielsRogge committed
96
97
98
99
100

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
101
        pixel_labels = None
NielsRogge's avatar
NielsRogge committed
102
103
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
104
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
NielsRogge's avatar
NielsRogge committed
105
106
107

        config = self.get_config()

108
        return config, pixel_values, labels, pixel_labels
NielsRogge's avatar
NielsRogge committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    def get_config(self):
        return BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
125
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
126
127
        )

128
    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
129
130
131
132
133
134
135
136
137
138
        model = BeitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(self.image_size)
        patch_size = to_2tuple(self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))

139
    def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
140
141
142
143
144
145
146
147
148
149
        model = BeitForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected sequence length = num_patches
        image_size = to_2tuple(self.image_size)
        patch_size = to_2tuple(self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, self.vocab_size))

150
    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
151
152
153
154
155
156
157
        config.num_labels = self.type_sequence_label_size
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels):
        config.num_labels = self.num_labels
        model = BeitForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
        )
        result = model(pixel_values, labels=pixel_labels)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
        )

NielsRogge's avatar
NielsRogge committed
172
173
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
174
        config, pixel_values, labels, pixel_labels = config_and_inputs
NielsRogge's avatar
NielsRogge committed
175
176
177
178
179
180
181
182
183
184
185
186
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class BeitModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
187
188
189
        (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
        if is_torch_available()
        else ()
NielsRogge's avatar
NielsRogge committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    )

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = BeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # BEiT does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

233
234
235
236
    def test_for_image_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
237
238
239
240
241
242
243
244
245
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
246
            if model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]:
247
                continue
248
249
250
251
            # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
            # this can then be incorporated into _prepare_for_class in test_modeling_common.py
            elif model_class.__name__ == "BeitForSemanticSegmentation":
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
NielsRogge's avatar
NielsRogge committed
252
253
254
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
272
273
274
275
            if (
                model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]
                or not model_class.supports_gradient_checkpointing
            ):
NielsRogge's avatar
NielsRogge committed
276
                continue
277
278
279
280
            # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
            # this can then be incorporated into _prepare_for_class in test_modeling_common.py
            elif model_class.__name__ == "BeitForSemanticSegmentation":
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
NielsRogge's avatar
NielsRogge committed
281
282
283
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
NielsRogge's avatar
NielsRogge committed
284
            model = model_class(config)
285
            model.gradient_checkpointing_enable()
NielsRogge's avatar
NielsRogge committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        # in BEiT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        seq_len = num_patches + 1
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
345
346

            attentions = outputs.attentions
NielsRogge's avatar
NielsRogge committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

364
            self.assertEqual(out_len + 1, len(outputs))
NielsRogge's avatar
NielsRogge committed
365

366
            self_attentions = outputs.attentions
NielsRogge's avatar
NielsRogge committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            # BEiT has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
            seq_length = num_patches + 1

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = BeitModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


434
@require_torch
NielsRogge's avatar
NielsRogge committed
435
436
437
438
439
440
441
442
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
        )

443
444
445
446
447
448
449
450
451
452
453
454
    @slow
    def test_inference_masked_image_modeling_head(self):
        model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(torch_device)

        # prepare bool_masked_pos
        bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)

        # forward pass
455
456
        with torch.no_grad():
            outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
457
458
459
460
461
462
463
464
465
466
467
468
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 196, 8192))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

NielsRogge's avatar
NielsRogge committed
469
470
471
472
473
474
475
476
477
    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
478
479
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
            torch_device
        )

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
504
505
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
506
507
508
509
510
511
512
513
514
515
516
517
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 21841))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
518
519
520
521
522
523
524
525
526
527
528
529
530

    @slow
    def test_inference_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

        feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
531
532
        with torch.no_grad():
            outputs = model(**inputs)
533
534
535
        logits = outputs.logits

        # verify the logits
536
        expected_shape = torch.Size((1, 150, 640, 640))
537
538
539
540
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [
541
542
543
                [[-4.9225, -4.9225, -4.6066], [-4.9225, -4.9225, -4.6066], [-4.6675, -4.6675, -4.3617]],
                [[-5.8168, -5.8168, -5.5163], [-5.8168, -5.8168, -5.5163], [-5.5728, -5.5728, -5.2842]],
                [[-0.0078, -0.0078, 0.4926], [-0.0078, -0.0078, 0.4926], [0.3664, 0.3664, 0.8309]],
544
545
546
547
            ]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))