run_openai_gpt.py 12.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
" Run OpenAI GPT on RocStories"
import argparse
import os
import random
import logging

from sklearn.metrics import accuracy_score
from sklearn.utils import shuffle

# from analysis import rocstories as rocstories_analysis
# from datasets import rocstories
# from model_pytorch import DoubleHeadModel, load_openai_pretrained_model
# from opt import OpenAIAdam
# from text_utils import TextEncoder
# from utils import (encode_dataset, iter_data,
#                    ResultLogger, make_path)
# from loss import MultipleChoiceLossCompute

import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

from pytorch_pretrained_bert.tokenization_openai import OpenAIGPTTokenizer
from pytorch_pretrained_bert.modeling_openai import OpenAIGPTDoubleHeadsModel
from pytorch_pretrained_bert.optimization_openai import OpenAIAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def transform_roc(X1, X2, X3):
    n_batch = len(X1)
    xmb = np.zeros((n_batch, 2, n_ctx, 2), dtype=np.int32)
    mmb = np.zeros((n_batch, 2, n_ctx), dtype=np.float32)
    start = encoder['_start_']
    delimiter = encoder['_delimiter_']
    for i, (x1, x2, x3), in enumerate(zip(X1, X2, X3)):
        x12 = [start] + x1[:max_len] + [delimiter] + x2[:max_len] + [clf_token]
        x13 = [start] + x1[:max_len] + [delimiter] + x3[:max_len] + [clf_token]
        l12 = len(x12)
        l13 = len(x13)
        xmb[i, 0, :l12, 0] = x12
        xmb[i, 1, :l13, 0] = x13
        mmb[i, 0, :l12] = 1
        mmb[i, 1, :l13] = 1
    # Position information that is added to the input embeddings in the TransformerModel
    xmb[:, :, :, 1] = np.arange(n_vocab + n_special, n_vocab + n_special + n_ctx)
    return xmb, mmb


def iter_apply(Xs, Ms, Ys):
    # fns = [lambda x: np.concatenate(x, 0), lambda x: float(np.sum(x))]
    logits = []
    cost = 0
    with torch.no_grad():
        dh_model.eval()
        for xmb, mmb, ymb in iter_data(Xs, Ms, Ys, n_batch=n_batch_train, truncate=False, verbose=True):
            n = len(xmb)
            XMB = torch.tensor(xmb, dtype=torch.long).to(device)
            YMB = torch.tensor(ymb, dtype=torch.long).to(device)
            MMB = torch.tensor(mmb).to(device)
            _, clf_logits = dh_model(XMB)
            clf_logits *= n
            clf_losses = compute_loss_fct(XMB, YMB, MMB, clf_logits, only_return_losses=True)
            clf_losses *= n
            logits.append(clf_logits.to("cpu").numpy())
            cost += clf_losses.sum().item()
        logits = np.concatenate(logits, 0)
    return logits, cost


def iter_predict(Xs, Ms):
    logits = []
    with torch.no_grad():
        dh_model.eval()
        for xmb, mmb in iter_data(Xs, Ms, n_batch=n_batch_train, truncate=False, verbose=True):
            n = len(xmb)
            XMB = torch.tensor(xmb, dtype=torch.long).to(device)
            MMB = torch.tensor(mmb).to(device)
            _, clf_logits = dh_model(XMB)
            logits.append(clf_logits.to("cpu").numpy())
    logits = np.concatenate(logits, 0)
    return logits


def log(save_dir, desc):
    global best_score
    print("Logging")
    tr_logits, tr_cost = iter_apply(trX[:n_valid], trM[:n_valid], trY[:n_valid])
    va_logits, va_cost = iter_apply(vaX, vaM, vaY)
    tr_cost = tr_cost / len(trY[:n_valid])
    va_cost = va_cost / n_valid
    tr_acc = accuracy_score(trY[:n_valid], np.argmax(tr_logits, 1)) * 100.
    va_acc = accuracy_score(vaY, np.argmax(va_logits, 1)) * 100.
    logger.log(n_epochs=n_epochs, n_updates=n_updates, tr_cost=tr_cost, va_cost=va_cost, tr_acc=tr_acc, va_acc=va_acc)
    print('%d %d %.3f %.3f %.2f %.2f' % (n_epochs, n_updates, tr_cost, va_cost, tr_acc, va_acc))
    if submit:
        score = va_acc
        if score > best_score:
            best_score = score
            path = os.path.join(save_dir, desc, 'best_params')
            torch.save(dh_model.state_dict(), make_path(path))


def predict(dataset, submission_dir):
    filename = filenames[dataset]
    pred_fn = pred_fns[dataset]
    label_decoder = label_decoders[dataset]
    predictions = pred_fn(iter_predict(teX, teM))
    if label_decoder is not None:
        predictions = [label_decoder[prediction] for prediction in predictions]
    path = os.path.join(submission_dir, filename)
    os.makedirs(os.path.dirname(path), exist_ok=True)
    with open(path, 'w') as f:
        f.write('{}\t{}\n'.format('index', 'prediction'))
        for i, prediction in enumerate(predictions):
            f.write('{}\t{}\n'.format(i, prediction))


def run_epoch():
    for xmb, mmb, ymb in iter_data(*shuffle(trX, trM, trYt, random_state=np.random),
                                   n_batch=n_batch_train, truncate=True, verbose=True):
        global n_updates
        dh_model.train()
        XMB = torch.tensor(xmb, dtype=torch.long).to(device)
        YMB = torch.tensor(ymb, dtype=torch.long).to(device)
        MMB = torch.tensor(mmb).to(device)
        lm_logits, clf_logits = dh_model(XMB)
        compute_loss_fct(XMB, YMB, MMB, clf_logits, lm_logits)
        n_updates += 1
        if n_updates in [1000, 2000, 4000, 8000, 16000, 32000] and n_epochs == 0:
            log(save_dir, desc)


argmax = lambda x: np.argmax(x, 1)

pred_fns = {
    'rocstories': argmax,
}

filenames = {
    'rocstories': 'ROCStories.tsv',
}

label_decoders = {
    'rocstories': None,
}

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--desc', type=str, help="Description")
    parser.add_argument('--dataset', type=str)
    parser.add_argument('--log_dir', type=str, default='log/')
    parser.add_argument('--save_dir', type=str, default='save/')
    parser.add_argument('--data_dir', type=str, default='data/')
    parser.add_argument('--submission_dir', type=str, default='submission/')
    parser.add_argument('--submit', action='store_true')
    parser.add_argument('--analysis', action='store_true')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--n_iter', type=int, default=3)
    parser.add_argument('--n_batch', type=int, default=8)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--lr', type=float, default=6.25e-5)
    parser.add_argument('--lr_warmup', type=float, default=0.002)
    parser.add_argument('--n_ctx', type=int, default=512)
    parser.add_argument('--n_embd', type=int, default=768)
    parser.add_argument('--n_head', type=int, default=12)
    parser.add_argument('--n_layer', type=int, default=12)
    parser.add_argument('--embd_pdrop', type=float, default=0.1)
    parser.add_argument('--attn_pdrop', type=float, default=0.1)
    parser.add_argument('--resid_pdrop', type=float, default=0.1)
    parser.add_argument('--clf_pdrop', type=float, default=0.1)
    parser.add_argument('--l2', type=float, default=0.01)
    parser.add_argument('--vector_l2', action='store_true')
    parser.add_argument('--opt', type=str, default='adam')
    parser.add_argument('--afn', type=str, default='gelu')
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--encoder_path', type=str, default='model/encoder_bpe_40000.json')
    parser.add_argument('--bpe_path', type=str, default='model/vocab_40000.bpe')
    parser.add_argument('--n_transfer', type=int, default=12)
    parser.add_argument('--lm_coef', type=float, default=0.5)
    parser.add_argument('--b1', type=float, default=0.9)
    parser.add_argument('--b2', type=float, default=0.999)
    parser.add_argument('--e', type=float, default=1e-8)
    parser.add_argument('--n_valid', type=int, default=374)

    args = parser.parse_args()
    print(args)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Constants
    submit = args.submit
    dataset = args.dataset
    n_ctx = args.n_ctx
    save_dir = args.save_dir
    desc = args.desc
    data_dir = args.data_dir
    log_dir = args.log_dir
    submission_dir = args.submission_dir

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    print("device", device, "n_gpu", n_gpu)

    logger = ResultLogger(path=os.path.join(log_dir, '{}.jsonl'.format(desc)), **args.__dict__)
    text_encoder = TextEncoder(args.encoder_path, args.bpe_path)
    encoder = text_encoder.encoder
    n_vocab = len(text_encoder.encoder)

    print("Encoding dataset...")
    ((trX1, trX2, trX3, trY),
     (vaX1, vaX2, vaX3, vaY),
     (teX1, teX2, teX3)) = encode_dataset(*rocstories(data_dir, n_valid=args.n_valid),
                                          encoder=text_encoder)
    encoder['_start_'] = len(encoder)
    encoder['_delimiter_'] = len(encoder)
    encoder['_classify_'] = len(encoder)
    clf_token = encoder['_classify_']
    n_special = 3
    max_len = n_ctx // 2 - 2
    n_ctx = min(max(
        [len(x1[:max_len]) + max(len(x2[:max_len]),
                                 len(x3[:max_len])) for x1, x2, x3 in zip(trX1, trX2, trX3)]
        + [len(x1[:max_len]) + max(len(x2[:max_len]),
                                   len(x3[:max_len])) for x1, x2, x3 in zip(vaX1, vaX2, vaX3)]
        + [len(x1[:max_len]) + max(len(x2[:max_len]),
                                   len(x3[:max_len])) for x1, x2, x3 in zip(teX1, teX2, teX3)]
        ) + 3, n_ctx)
    vocab = n_vocab + n_special + n_ctx
    trX, trM = transform_roc(trX1, trX2, trX3)
    vaX, vaM = transform_roc(vaX1, vaX2, vaX3)
    if submit:
        teX, teM = transform_roc(teX1, teX2, teX3)

    n_train = len(trY)
    n_valid = len(vaY)
    n_batch_train = args.n_batch * max(n_gpu, 1)
    n_updates_total = (n_train // n_batch_train) * args.n_iter

    dh_model = DoubleHeadModel(args, clf_token, 'multiple_choice', vocab, n_ctx)

    criterion = nn.CrossEntropyLoss(reduce=False)
    model_opt = OpenAIAdam(dh_model.parameters(),
                           lr=args.lr,
                           schedule=args.lr_schedule,
                           warmup=args.lr_warmup,
                           t_total=n_updates_total,
                           b1=args.b1,
                           b2=args.b2,
                           e=args.e,
                           l2=args.l2,
                           vector_l2=args.vector_l2,
                           max_grad_norm=args.max_grad_norm)
    compute_loss_fct = MultipleChoiceLossCompute(criterion,
                                                 criterion,
                                                 args.lm_coef,
                                                 model_opt)
    load_openai_pretrained_model(dh_model.transformer, n_ctx=n_ctx, n_special=n_special)

    dh_model.to(device)
    dh_model = nn.DataParallel(dh_model)

    n_updates = 0
    n_epochs = 0
    if dataset != 'stsb':
        trYt = trY
    if submit:
        path = os.path.join(save_dir, desc, 'best_params')
        torch.save(dh_model.state_dict(), make_path(path))
    best_score = 0
    for i in range(args.n_iter):
        print("running epoch", i)
        run_epoch()
        n_epochs += 1
        log(save_dir, desc)
    if submit:
        path = os.path.join(save_dir, desc, 'best_params')
        dh_model.load_state_dict(torch.load(path))
        predict(dataset, args.submission_dir)
        if args.analysis:
            rocstories_analysis(data_dir, os.path.join(args.submission_dir, 'ROCStories.tsv'),
                                os.path.join(log_dir, 'rocstories.jsonl'))