run_ner.py 28.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Matt Maybeno's avatar
Matt Maybeno committed
16
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
from seqeval.metrics import precision_score, recall_score, f1_score
from tensorboardX import SummaryWriter
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file

36
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
37
from transformers import WEIGHTS_NAME, BertConfig, BertForTokenClassification, BertTokenizer
Matt Maybeno's avatar
Matt Maybeno committed
38
from transformers import RobertaConfig, RobertaForTokenClassification, RobertaTokenizer
39
from transformers import DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer
40
from transformers import CamembertConfig, CamembertForTokenClassification, CamembertTokenizer
41
42
43
44

logger = logging.getLogger(__name__)

ALL_MODELS = sum(
45
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, DistilBertConfig)),
46
47
48
49
    ())

MODEL_CLASSES = {
    "bert": (BertConfig, BertForTokenClassification, BertTokenizer),
50
    "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer),
51
52
    "distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer),
    "camembert": (CamembertConfig, CamembertForTokenClassification, CamembertTokenizer),
53
54
55
56
57
58
59
60
61
62
63
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


64
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
         "weight_decay": args.weight_decay},
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
87
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {"input_ids": batch[0],
                      "attention_mask": batch[1],
                      "labels": batch[3]}
129
130
131
            if args.model_type != "distilbert":
                inputs["token_type_ids"]: batch[2] if args.model_type in ["bert", "xlnet"] else None  # XLM and RoBERTa don"t use segment_ids

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
148
149
150
151
152
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

153
154
155
156
157
158
159
160
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
161
                        results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
162
163
164
165
166
167
168
169
170
171
172
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
173
                    model_to_save = model.module if hasattr(model, "module") else model  # Take care of distributed/parallel training
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


191
192
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""):
    eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode)
193
194
195
196
197
198

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
199
200
201
202
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
            inputs = {"input_ids": batch[0],
                      "attention_mask": batch[1],
                      "labels": batch[3]}
219
220
            if args.model_type != "distilbert":
                inputs["token_type_ids"]: batch[2] if args.model_type in ["bert", "xlnet"] else None  # XLM and RoBERTa don"t use segment_ids
221
222
223
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]

224
225
226
            if args.n_gpu > 1:
                tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu parallel evaluating

227
228
229
230
231
232
233
234
235
236
237
238
            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = inputs["labels"].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

239
    label_map = {i: label for i, label in enumerate(labels)}
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(label_map[out_label_ids[i][j]])
                preds_list[i].append(label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list)
    }

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

261
    return results, preds_list
262
263


264
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode):
265
266
267
268
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
269
    cached_features_file = os.path.join(args.data_dir, "cached_{}_{}_{}".format(mode,
270
271
        list(filter(None, args.model_name_or_path.split("/"))).pop(),
        str(args.max_seq_length)))
272
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
273
274
275
276
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
277
        examples = read_examples_from_file(args.data_dir, mode)
278
        features = convert_examples_to_features(examples, labels, args.max_seq_length, tokenizer,
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                                                cls_token_at_end=bool(args.model_type in ["xlnet"]),
                                                # xlnet has a cls token at the end
                                                cls_token=tokenizer.cls_token,
                                                cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
                                                sep_token=tokenizer.sep_token,
                                                sep_token_extra=bool(args.model_type in ["roberta"]),
                                                # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
                                                pad_on_left=bool(args.model_type in ["xlnet"]),
                                                # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
                                                pad_token_label_id=pad_token_label_id
                                                )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
323
324
    parser.add_argument("--labels", default="", type=str,
                        help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.")
325
326
327
328
329
330
331
332
333
334
335
336
337
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train", action="store_true",
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true",
                        help="Whether to run eval on the dev set.")
338
339
    parser.add_argument("--do_predict", action="store_true",
                        help="Whether to run predictions on the test set.")
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    parser.add_argument("--evaluate_during_training", action="store_true",
                        help="Whether to run evaluation during training at each logging step.")
    parser.add_argument("--do_lower_case", action="store_true",
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action="store_true",
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action="store_true",
                        help="Avoid using CUDA when available")
    parser.add_argument("--overwrite_output_dir", action="store_true",
                        help="Overwrite the content of the output directory")
    parser.add_argument("--overwrite_cache", action="store_true",
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument("--seed", type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument("--fp16", action="store_true",
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument("--fp16_opt_level", type=str, default="O1",
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
    args = parser.parse_args()

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    # Prepare CONLL-2003 task
428
429
    labels = get_labels(args.labels)
    num_labels = len(labels)
430
431
432
433
434
435
436
437
438
439
    # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
    pad_token_label_id = CrossEntropyLoss().ignore_index

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
thomwolf's avatar
thomwolf committed
440
441
                                          num_labels=num_labels,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
442
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
thomwolf's avatar
thomwolf committed
443
444
445
446
447
448
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool(".ckpt" in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
449
450
451
452
453
454
455
456
457
458

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
459
        train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train")
460
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id)
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, "module") else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
492
            result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step)
493
494
495
496
497
498
499
500
            if global_step:
                result = {"{}_{}".format(global_step, k): v for k, v in result.items()}
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        model = model_class.from_pretrained(args.output_dir)
        model.to(args.device)
        result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="test")
        # Save results
        output_test_results_file = os.path.join(args.output_dir, "test_results.txt")
        with open(output_test_results_file, "w") as writer:
            for key in sorted(result.keys()):
                writer.write("{} = {}\n".format(key, str(result[key])))
        # Save predictions
        output_test_predictions_file = os.path.join(args.output_dir, "test_predictions.txt")
        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(args.data_dir, "test.txt"), "r") as f:
                example_id = 0
                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)
                        if not predictions[example_id]:
                            example_id += 1
                    elif predictions[example_id]:
                        output_line = line.split()[0] + " " + predictions[example_id].pop(0) + "\n"
                        writer.write(output_line)
                    else:
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

527
528
529
530
531
    return results


if __name__ == "__main__":
    main()
532