test_processor_flava.py 9.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import random
import shutil
import tempfile
import unittest

import numpy as np
import pytest

from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
28
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
29
30
31
32
33


if is_vision_available():
    from PIL import Image

34
    from transformers import FlavaImageProcessor, FlavaProcessor
amyeroberts's avatar
amyeroberts committed
35
    from transformers.models.flava.image_processing_flava import (
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        FLAVA_CODEBOOK_MEAN,
        FLAVA_CODEBOOK_STD,
        FLAVA_IMAGE_MEAN,
        FLAVA_IMAGE_STD,
    )


@require_vision
class FlavaProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        # fmt: off
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
        # fmt: on
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])

        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write("".join([x + "\n" for x in vocab_tokens]))

56
        image_processor_map = {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
            "image_mean": FLAVA_IMAGE_MEAN,
            "image_std": FLAVA_IMAGE_STD,
            "do_normalize": True,
            "do_resize": True,
            "size": 224,
            "do_center_crop": True,
            "crop_size": 224,
            "input_size_patches": 14,
            "total_mask_patches": 75,
            "mask_group_max_patches": None,
            "mask_group_min_patches": 16,
            "mask_group_min_aspect_ratio": 0.3,
            "mask_group_max_aspect_ratio": None,
            "codebook_do_resize": True,
            "codebook_size": 112,
            "codebook_do_center_crop": True,
            "codebook_crop_size": 112,
            "codebook_do_map_pixels": True,
            "codebook_do_normalize": True,
            "codebook_image_mean": FLAVA_CODEBOOK_MEAN,
            "codebook_image_std": FLAVA_CODEBOOK_STD,
        }

80
81
82
        self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
        with open(self.image_processor_file, "w", encoding="utf-8") as fp:
            json.dump(image_processor_map, fp)
83
84
85
86
87
88
89

    def get_tokenizer(self, **kwargs):
        return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs):
        return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

90
91
    def get_image_processor(self, **kwargs):
        return FlavaImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_default(self):
        tokenizer_slow = self.get_tokenizer()
        tokenizer_fast = self.get_rust_tokenizer()
110
        image_processor = self.get_image_processor()
111

112
        processor_slow = FlavaProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
113
114
115
        processor_slow.save_pretrained(self.tmpdirname)
        processor_slow = FlavaProcessor.from_pretrained(self.tmpdirname, use_fast=False)

116
        processor_fast = FlavaProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
117
118
119
120
121
122
123
124
125
        processor_fast.save_pretrained(self.tmpdirname)
        processor_fast = FlavaProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
        self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
        self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
        self.assertIsInstance(processor_slow.tokenizer, BertTokenizer)
        self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast)

126
127
128
129
        self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
        self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
        self.assertIsInstance(processor_slow.image_processor, FlavaImageProcessor)
        self.assertIsInstance(processor_fast.image_processor, FlavaImageProcessor)
130
131

    def test_save_load_pretrained_additional_features(self):
132
        processor = FlavaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
133
134
135
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
136
        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
137
138
139
140
141
142
143
144

        processor = FlavaProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, BertTokenizerFast)

145
146
        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, FlavaImageProcessor)
147

148
149
    def test_image_processor(self):
        image_processor = self.get_image_processor()
150
151
        tokenizer = self.get_tokenizer()

152
        processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
153
154
155

        image_input = self.prepare_image_inputs()

156
        input_feat_extract = image_processor(image_input, return_tensors="np")
157
158
159
160
161
162
163
        input_processor = processor(images=image_input, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

        # With rest of the args
        random.seed(1234)
164
        input_feat_extract = image_processor(
165
166
167
168
169
170
171
172
173
174
175
            image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np"
        )
        random.seed(1234)
        input_processor = processor(
            images=image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np"
        )

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
176
        image_processor = self.get_image_processor()
177
178
        tokenizer = self.get_tokenizer()

179
        processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
180
181
182
183
184
185
186
187
188
189
190

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_processor(self):
191
        image_processor = self.get_image_processor()
192
193
        tokenizer = self.get_tokenizer()

194
        processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])

        # add extra args
        inputs = processor(text=input_str, images=image_input, return_codebook_pixels=True, return_image_mask=True)

        self.assertListEqual(
            list(inputs.keys()),
            [
                "input_ids",
                "token_type_ids",
                "attention_mask",
                "pixel_values",
                "codebook_pixel_values",
                "bool_masked_pos",
            ],
        )

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()

    def test_tokenizer_decode(self):
223
        image_processor = self.get_image_processor()
224
225
        tokenizer = self.get_tokenizer()

226
        processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
227
228
229
230
231
232
233

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)
234
235

    def test_model_input_names(self):
236
        image_processor = self.get_image_processor()
237
238
        tokenizer = self.get_tokenizer()

239
        processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
240
241
242
243
244
245
246

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), processor.model_input_names)