run_language_modeling.py 33.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26


import argparse
import glob
import logging
import os
27
import pickle
28
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
29
30
import re
import shutil
31
from typing import Dict, List, Tuple
32
33
34

import numpy as np
import torch
35
from torch.nn.utils.rnn import pad_sequence
Aymeric Augustin's avatar
Aymeric Augustin committed
36
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
37
38
39
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

40
from transformers import (
41
42
    CONFIG_MAPPING,
    MODEL_WITH_LM_HEAD_MAPPING,
43
44
    WEIGHTS_NAME,
    AdamW,
45
46
47
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
48
    PreTrainedModel,
49
    PreTrainedTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
50
    get_linear_schedule_with_warmup,
51
)
52

53

Aymeric Augustin's avatar
Aymeric Augustin committed
54
55
try:
    from torch.utils.tensorboard import SummaryWriter
56
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
57
58
59
    from tensorboardX import SummaryWriter


60
logger = logging.getLogger(__name__)
61
62


63
64
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
65
66


67
class TextDataset(Dataset):
68
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
69
        assert os.path.isfile(file_path)
70
71
72

        block_size = block_size - (tokenizer.max_len - tokenizer.max_len_single_sentence)

73
        directory, filename = os.path.split(file_path)
74
        cached_features_file = os.path.join(
75
            directory, args.model_type + "_cached_lm_" + str(block_size) + "_" + filename
76
        )
77

Lysandre's avatar
Lysandre committed
78
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
79
            logger.info("Loading features from cached file %s", cached_features_file)
80
            with open(cached_features_file, "rb") as handle:
81
82
83
84
85
86
87
88
89
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
90

91
92
            for i in range(0, len(tokenized_text) - block_size + 1, block_size):  # Truncate in block of block_size
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]))
93
94
95
96
97
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
98
            with open(cached_features_file, "wb") as handle:
99
100
101
102
103
104
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
105
        return torch.tensor(self.examples[item], dtype=torch.long)
106
107


108
109
110
111
112
113
114
115
116
class LineByLineTextDataset(Dataset):
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
        assert os.path.isfile(file_path)
        # Here, we do not cache the features, operating under the assumption
        # that we will soon use fast multithreaded tokenizers from the
        # `tokenizers` repo everywhere =)
        logger.info("Creating features from dataset file at %s", file_path)

        with open(file_path, encoding="utf-8") as f:
117
            lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
118

119
        self.examples = tokenizer.batch_encode_plus(lines, add_special_tokens=True, max_length=block_size)["input_ids"]
120
121
122
123
124

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
125
        return torch.tensor(self.examples[i], dtype=torch.long)
126
127


128
def load_and_cache_examples(args, tokenizer, evaluate=False):
129
130
131
132
133
    file_path = args.eval_data_file if evaluate else args.train_data_file
    if args.line_by_line:
        return LineByLineTextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
    else:
        return TextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
134
135


136
137
138
139
140
141
142
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

143

144
145
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
    ordering_and_checkpoint_path = []
146

147
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
148
149

    for path in glob_checkpoints:
150
151
152
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
153
            regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
154
155
156
157
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
158
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    return checkpoints_sorted


def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
    if len(checkpoints_sorted) <= args.save_total_limit:
        return

jinoobaek-qz's avatar
jinoobaek-qz committed
173
174
175
176
177
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
178
179


180
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
181
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
182
183
184
185
186
187

    if tokenizer.mask_token is None:
        raise ValueError(
            "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
        )

188
    labels = inputs.clone()
189
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
190
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
191
192
193
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    ]
194
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
195
196
197
    if tokenizer._pad_token is not None:
        padding_mask = labels.eq(tokenizer.pad_token_id)
        probability_matrix.masked_fill_(padding_mask, value=0.0)
198
    masked_indices = torch.bernoulli(probability_matrix).bool()
Lysandre's avatar
Lysandre committed
199
    labels[~masked_indices] = -100  # We only compute loss on masked tokens
200
201

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
202
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
203
204
205
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
206
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
207
208
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
209

210
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
211
    return inputs, labels
212

213

214
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
215
216
217
218
219
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
220
221

    def collate(examples: List[torch.Tensor]):
222
223
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
224
225
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

thomwolf's avatar
thomwolf committed
226
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
227
228
229
    train_dataloader = DataLoader(
        train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate
    )
230
231
232
233
234
235
236
237

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
238
    no_decay = ["bias", "LayerNorm.weight"]
239
    optimizer_grouped_parameters = [
240
241
242
243
244
245
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
246
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
247
248
249
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
250
251

    # Check if saved optimizer or scheduler states exist
Julien Chaumond's avatar
Julien Chaumond committed
252
253
254
255
    if (
        args.model_name_or_path
        and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
        and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
256
    ):
257
        # Load in optimizer and scheduler states
258
259
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
260

261
262
263
264
265
266
267
268
269
270
271
272
273
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
274
275
276
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
277
278
279
280
281
282

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
283
284
285
286
287
288
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
289
290
291
292
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
293
294
295
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
296
    if args.model_name_or_path and os.path.exists(args.model_name_or_path):
297
298
299
300
301
302
303
304
305
306
307
308
309
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
310

311
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
312

313
    model_to_resize = model.module if hasattr(model, "module") else model  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
314
315
    model_to_resize.resize_token_embeddings(len(tokenizer))

316
    model.zero_grad()
317
318
319
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
320
    set_seed(args)  # Added here for reproducibility
Bilal Khan's avatar
Bilal Khan committed
321
    for _ in train_iterator:
322
323
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
324

325
326
327
328
329
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

330
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
331
332
333
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
334
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
335
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
336
337

            if args.n_gpu > 1:
338
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
339
340
341
342
343
344
345
346
347
348
349
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
350
351
352
353
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
354
                optimizer.step()
355
                scheduler.step()  # Update learning rate schedule
356
357
358
359
360
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
361
362
363
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
364
365
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
366
367
368
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
369
370
371
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
372
                    checkpoint_prefix = "checkpoint"
373
                    # Save model checkpoint
374
                    output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
375
                    os.makedirs(output_dir, exist_ok=True)
376
377
378
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
379
                    model_to_save.save_pretrained(output_dir)
380
381
                    tokenizer.save_pretrained(output_dir)

382
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
383
384
                    logger.info("Saving model checkpoint to %s", output_dir)

385
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
386

387
388
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
Bilal Khan's avatar
Bilal Khan committed
389
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
390

391
392
393
394
395
396
397
398
399
400
401
402
403
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


404
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict:
405
406
407
408
409
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

410
411
    if args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir, exist_ok=True)
412
413
414

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
415
416

    def collate(examples: List[torch.Tensor]):
417
418
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
419
420
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

421
    eval_sampler = SequentialSampler(eval_dataset)
422
423
424
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate
    )
425

ronakice's avatar
ronakice committed
426
427
428
429
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

430
431
432
433
434
435
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
436
437
    model.eval()

438
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
altsoph's avatar
altsoph committed
439
440
441
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)
442
443

        with torch.no_grad():
altsoph's avatar
altsoph committed
444
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
445
446
447
448
449
450
451
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

452
    result = {"perplexity": perplexity}
453

454
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
455
456
457
458
459
460
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

461
    return result
462
463
464
465
466


def main():
    parser = argparse.ArgumentParser()

467
    # Required parameters
468
469
470
471
472
473
474
475
476
    parser.add_argument(
        "--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
477
478
479
    parser.add_argument(
        "--model_type", type=str, required=True, help="The model architecture to be trained or fine-tuned.",
    )
480

481
    # Other parameters
482
483
484
485
486
487
    parser.add_argument(
        "--eval_data_file",
        default=None,
        type=str,
        help="An optional input evaluation data file to evaluate the perplexity on (a text file).",
    )
488
489
490
491
492
    parser.add_argument(
        "--line_by_line",
        action="store_true",
        help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
    )
Julien Chaumond's avatar
Julien Chaumond committed
493
494
495
    parser.add_argument(
        "--should_continue", action="store_true", help="Whether to continue from latest checkpoint in output_dir"
    )
496
497
    parser.add_argument(
        "--model_name_or_path",
498
        default=None,
499
        type=str,
500
        help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
501
502
503
504
505
506
507
508
509
510
511
    )

    parser.add_argument(
        "--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling."
    )
    parser.add_argument(
        "--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
    )

    parser.add_argument(
        "--config_name",
512
        default=None,
513
        type=str,
514
        help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.",
515
516
517
    )
    parser.add_argument(
        "--tokenizer_name",
518
519
520
521
        default=None,
        type=str,
        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.",
    )
522
523
    parser.add_argument(
        "--cache_dir",
524
        default=None,
525
        type=str,
Oren Amsalem's avatar
Oren Amsalem committed
526
        help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)",
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    )
    parser.add_argument(
        "--block_size",
        default=-1,
        type=int,
        help="Optional input sequence length after tokenization."
        "The training dataset will be truncated in block of this size for training."
        "Default to the model max input length for single sentence inputs (take into account special tokens).",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

567
568
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    parser.add_argument(
        "--save_total_limit",
        type=int,
        default=None,
        help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
    )
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
604
605
    args = parser.parse_args()

maxvidal's avatar
maxvidal committed
606
    if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
607
        raise ValueError(
608
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
609
610
            "flag (masked language modeling)."
        )
611
    if args.eval_data_file is None and args.do_eval:
612
613
614
615
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
616
617
618
    if args.should_continue:
        sorted_checkpoints = _sorted_checkpoints(args)
        if len(sorted_checkpoints) == 0:
Julien Chaumond's avatar
Julien Chaumond committed
619
            raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
620
621
        else:
            args.model_name_or_path = sorted_checkpoints[-1]
622
623
624
625
626
627
628
629
630
631
632
633

    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
634
635
636
637
638

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
639

640
641
642
643
644
645
646
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
647
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
648
649
650
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
651
        torch.distributed.init_process_group(backend="nccl")
652
653
654
655
        args.n_gpu = 1
    args.device = device

    # Setup logging
656
657
658
659
660
661
662
663
664
665
666
667
668
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
669
670
671
672
673
674

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
675
676
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

677
    if args.config_name:
678
        config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)
679
    elif args.model_name_or_path:
680
        config = AutoConfig.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
681
    else:
682
        config = CONFIG_MAPPING[args.model_type]()
683
684

    if args.tokenizer_name:
685
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
686
    elif args.model_name_or_path:
687
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
688
    else:
689
690
        raise ValueError(
            "You are instantiating a new {} tokenizer. This is not supported, but you can do it from another script, save it,"
691
            "and load it from here, using --tokenizer_name".format(AutoTokenizer.__name__)
692
693
        )

694
    if args.block_size <= 0:
695
        args.block_size = tokenizer.max_len
696
697
        # Our input block size will be the max possible for the model
    else:
698
        args.block_size = min(args.block_size, tokenizer.max_len)
699
700

    if args.model_name_or_path:
701
        model = AutoModelWithLMHead.from_pretrained(
702
703
704
705
706
707
708
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
            cache_dir=args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
709
        model = AutoModelWithLMHead(config=config)
710

711
    model.to(args.device)
712
713

    if args.local_rank == 0:
714
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
715
716
717
718
719

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
720
721
722
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

723
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
724
725
726
727

        if args.local_rank == 0:
            torch.distributed.barrier()

728
729
730
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

731
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
732
733
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
734
735
        if args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir, exist_ok=True)
736
737
738
739

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
740
741
742
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
743
744
745
746
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
747
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
748
749

        # Load a trained model and vocabulary that you have fine-tuned
750
751
        model = AutoModelWithLMHead.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
752
753
754
755
756
757
758
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
759
760
761
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
762
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
763
764
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
765
766
767
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

768
            model = AutoModelWithLMHead.from_pretrained(checkpoint)
769
            model.to(args.device)
770
            result = evaluate(args, model, tokenizer, prefix=prefix)
771
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
772
773
774
775
776
777
            results.update(result)

    return results


if __name__ == "__main__":
altsoph's avatar
altsoph committed
778
    main()