test_model_output.py 6.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import io
17
18
19
20
import unittest
from dataclasses import dataclass
from typing import Optional

21
from transformers import AlbertForMaskedLM
22
from transformers.testing_utils import require_torch
23
24
25
26
27
28
29
from transformers.utils import ModelOutput, is_torch_available


if is_torch_available():
    import torch

    from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112


@dataclass
class ModelOutputTest(ModelOutput):
    a: float
    b: Optional[float] = None
    c: Optional[float] = None


class ModelOutputTester(unittest.TestCase):
    def test_get_attributes(self):
        x = ModelOutputTest(a=30)
        self.assertEqual(x.a, 30)
        self.assertIsNone(x.b)
        self.assertIsNone(x.c)
        with self.assertRaises(AttributeError):
            _ = x.d

    def test_index_with_ints_and_slices(self):
        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(x[0], 30)
        self.assertEqual(x[1], 10)
        self.assertEqual(x[:2], (30, 10))
        self.assertEqual(x[:], (30, 10))

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(x[0], 30)
        self.assertEqual(x[1], 10)
        self.assertEqual(x[:2], (30, 10))
        self.assertEqual(x[:], (30, 10))

    def test_index_with_strings(self):
        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(x["a"], 30)
        self.assertEqual(x["b"], 10)
        with self.assertRaises(KeyError):
            _ = x["c"]

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(x["a"], 30)
        self.assertEqual(x["c"], 10)
        with self.assertRaises(KeyError):
            _ = x["b"]

    def test_dict_like_properties(self):
        x = ModelOutputTest(a=30)
        self.assertEqual(list(x.keys()), ["a"])
        self.assertEqual(list(x.values()), [30])
        self.assertEqual(list(x.items()), [("a", 30)])
        self.assertEqual(list(x), ["a"])

        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(list(x.values()), [30, 10])
        self.assertEqual(list(x.items()), [("a", 30), ("b", 10)])
        self.assertEqual(list(x), ["a", "b"])

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(list(x.keys()), ["a", "c"])
        self.assertEqual(list(x.values()), [30, 10])
        self.assertEqual(list(x.items()), [("a", 30), ("c", 10)])
        self.assertEqual(list(x), ["a", "c"])

        with self.assertRaises(Exception):
            x = x.update({"d": 20})
        with self.assertRaises(Exception):
            del x["a"]
        with self.assertRaises(Exception):
            _ = x.pop("a")
        with self.assertRaises(Exception):
            _ = x.setdefault("d", 32)

    def test_set_attributes(self):
        x = ModelOutputTest(a=30)
        x.a = 10
        self.assertEqual(x.a, 10)
        self.assertEqual(x["a"], 10)

    def test_set_keys(self):
        x = ModelOutputTest(a=30)
        x["a"] = 10
        self.assertEqual(x.a, 10)
        self.assertEqual(x["a"], 10)
113
114
115
116
117
118

    def test_instantiate_from_dict(self):
        x = ModelOutputTest({"a": 30, "b": 10})
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(x.a, 30)
        self.assertEqual(x.b, 10)
119
120
121
122
123
124
125
126
127
128
129
130
131

    def test_instantiate_from_iterator(self):
        x = ModelOutputTest([("a", 30), ("b", 10)])
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(x.a, 30)
        self.assertEqual(x.b, 10)

        with self.assertRaises(ValueError):
            _ = ModelOutputTest([("a", 30), (10, 10)])

        x = ModelOutputTest(a=(30, 30))
        self.assertEqual(list(x.keys()), ["a"])
        self.assertEqual(x.a, (30, 30))
132
133
134
135
136

    @require_torch
    def test_torch_pytree(self):
        # ensure torch.utils._pytree treats ModelOutput subclasses as nodes (and not leaves)
        # this is important for DistributedDataParallel gradient synchronization with static_graph=True
137
138
139
140
        import torch.utils._pytree as pytree

        x = ModelOutput({"a": 1.0, "c": 2.0})
        self.assertFalse(pytree._is_leaf(x))
141
142

        x = ModelOutputTest(a=1.0, c=2.0)
143
        self.assertFalse(pytree._is_leaf(x))
144
145

        expected_flat_outs = [1.0, 2.0]
146
        expected_tree_spec = pytree.TreeSpec(ModelOutputTest, ["a", "c"], [pytree.LeafSpec(), pytree.LeafSpec()])
147

148
        actual_flat_outs, actual_tree_spec = pytree.tree_flatten(x)
149
150
151
        self.assertEqual(expected_flat_outs, actual_flat_outs)
        self.assertEqual(expected_tree_spec, actual_tree_spec)

152
        unflattened_x = pytree.tree_unflatten(actual_flat_outs, actual_tree_spec)
153
        self.assertEqual(x, unflattened_x)
154

155
156
157
        if is_torch_greater_or_equal_than_2_2:
            self.assertEqual(
                pytree.treespec_dumps(actual_tree_spec),
158
                '[1, {"type": "tests.utils.test_model_output.ModelOutputTest", "context": "[\\"a\\", \\"c\\"]", "children_spec": [{"type": null, "context": null, "children_spec": []}, {"type": null, "context": null, "children_spec": []}]}]',
159
160
            )

161
162
    # TODO: @ydshieh
    @unittest.skip("CPU OOM")
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    @require_torch
    def test_export_serialization(self):
        if not is_torch_greater_or_equal_than_2_2:
            return

        model_cls = AlbertForMaskedLM
        model_config = model_cls.config_class()
        model = model_cls(model_config)

        input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)}

        ep = torch.export.export(model, (), input_dict)

        buffer = io.BytesIO()
        torch.export.save(ep, buffer)
        buffer.seek(0)
        loaded_ep = torch.export.load(buffer)

        input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)}
        assert torch.allclose(model(**input_dict).logits, loaded_ep(**input_dict).logits)

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

class ModelOutputTestNoDataclass(ModelOutput):
    """Invalid test subclass of ModelOutput where @dataclass decorator is not used"""

    a: float
    b: Optional[float] = None
    c: Optional[float] = None


class ModelOutputSubclassTester(unittest.TestCase):
    def test_direct_model_output(self):
        # Check that direct usage of ModelOutput instantiates without errors
        ModelOutput({"a": 1.1})

    def test_subclass_no_dataclass(self):
        # Check that a subclass of ModelOutput without @dataclass is invalid
        # A valid subclass is inherently tested other unit tests above.
        with self.assertRaises(TypeError):
            ModelOutputTestNoDataclass(a=1.1, b=2.2, c=3.3)