test_modeling_vits.py 17.3 KB
Newer Older
Matthijs Hollemans's avatar
Matthijs Hollemans committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch VITS model. """

import copy
import os
import tempfile
import unittest
from typing import Dict, List, Tuple

import numpy as np

from transformers import PretrainedConfig, VitsConfig
from transformers.testing_utils import (
Sanchit Gandhi's avatar
Sanchit Gandhi committed
27
    is_flaky,
Matthijs Hollemans's avatar
Matthijs Hollemans committed
28
29
    is_torch_available,
    require_torch,
30
    require_torch_multi_gpu,
Matthijs Hollemans's avatar
Matthijs Hollemans committed
31
32
33
34
35
36
37
38
39
40
41
42
    slow,
    torch_device,
)
from transformers.trainer_utils import set_seed

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    global_rng,
    ids_tensor,
    random_attention_mask,
)
43
from ...test_pipeline_mixin import PipelineTesterMixin
Matthijs Hollemans's avatar
Matthijs Hollemans committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


if is_torch_available():
    import torch

    from transformers import VitsModel, VitsTokenizer


CONFIG_NAME = "config.json"
GENERATION_CONFIG_NAME = "generation_config.json"


def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
            setattr(configs_no_init, key, 1e-10)
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
    return configs_no_init


@require_torch
class VitsModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=7,
        is_training=False,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=2,
        intermediate_size=64,
        flow_size=16,
        vocab_size=38,
        spectrogram_bins=8,
        duration_predictor_num_flows=2,
        duration_predictor_filter_channels=16,
        prior_encoder_num_flows=2,
        upsample_initial_channel=16,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
86
87
88
89
        upsample_rates=[8, 2],
        upsample_kernel_sizes=[16, 4],
        resblock_kernel_sizes=[3, 7],
        resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
Matthijs Hollemans's avatar
Matthijs Hollemans committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.flow_size = flow_size
        self.vocab_size = vocab_size
        self.spectrogram_bins = spectrogram_bins
        self.duration_predictor_num_flows = duration_predictor_num_flows
        self.duration_predictor_filter_channels = duration_predictor_filter_channels
        self.prior_encoder_num_flows = prior_encoder_num_flows
        self.upsample_initial_channel = upsample_initial_channel
Sanchit Gandhi's avatar
Sanchit Gandhi committed
106
107
108
109
        self.upsample_rates = upsample_rates
        self.upsample_kernel_sizes = upsample_kernel_sizes
        self.resblock_kernel_sizes = resblock_kernel_sizes
        self.resblock_dilation_sizes = resblock_dilation_sizes
Matthijs Hollemans's avatar
Matthijs Hollemans committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2)
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_config(self):
        return VitsConfig(
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            flow_size=self.flow_size,
            vocab_size=self.vocab_size,
            spectrogram_bins=self.spectrogram_bins,
            duration_predictor_num_flows=self.duration_predictor_num_flows,
            prior_encoder_num_flows=self.prior_encoder_num_flows,
            duration_predictor_filter_channels=self.duration_predictor_filter_channels,
            posterior_encoder_num_wavenet_layers=self.num_hidden_layers,
            upsample_initial_channel=self.upsample_initial_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
140
141
142
143
            upsample_rates=self.upsample_rates,
            upsample_kernel_sizes=self.upsample_kernel_sizes,
            resblock_kernel_sizes=self.resblock_kernel_sizes,
            resblock_dilation_sizes=self.resblock_dilation_sizes,
Matthijs Hollemans's avatar
Matthijs Hollemans committed
144
145
146
147
148
149
150
151
152
        )

    def create_and_check_model_forward(self, config, inputs_dict):
        model = VitsModel(config=config).to(torch_device).eval()

        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]

        result = model(input_ids, attention_mask=attention_mask)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
153
        self.parent.assertEqual((self.batch_size, 624), result.waveform.shape)
Matthijs Hollemans's avatar
Matthijs Hollemans committed
154
155
156


@require_torch
157
class VitsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Matthijs Hollemans's avatar
Matthijs Hollemans committed
158
    all_model_classes = (VitsModel,) if is_torch_available() else ()
159
160
161
    pipeline_model_mapping = (
        {"feature-extraction": VitsModel, "text-to-audio": VitsModel} if is_torch_available() else {}
    )
Matthijs Hollemans's avatar
Matthijs Hollemans committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    is_encoder_decoder = False
    test_pruning = False
    test_headmasking = False
    test_resize_embeddings = False
    test_head_masking = False
    test_torchscript = False
    has_attentions = False

    input_name = "input_ids"

    def setUp(self):
        self.model_tester = VitsModelTester(self)
        self.config_tester = ConfigTester(self, config_class=VitsConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

179
180
181
182
183
    # TODO: @ydshieh
    @is_flaky(description="torch 2.2.0 gives `Timeout >120.0s`")
    def test_pipeline_feature_extraction(self):
        super().test_pipeline_feature_extraction()

184
    @unittest.skip("Need to fix this after #26538")
Matthijs Hollemans's avatar
Matthijs Hollemans committed
185
186
187
188
189
190
    def test_model_forward(self):
        set_seed(12345)
        global_rng.seed(12345)
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_forward(*config_and_inputs)

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    @require_torch_multi_gpu
    # override to force all elements of the batch to have the same sequence length across GPUs
    def test_multi_gpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.use_stochastic_duration_prediction = False

        # move input tensors to cuda:O
        for key, value in inputs_dict.items():
            if torch.is_tensor(value):
                # make all elements of the batch the same -> ensures the output seq lengths are the same for DP
                value[1:] = value[0]
                inputs_dict[key] = value.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            set_seed(555)
            with torch.no_grad():
                _ = model(**self._prepare_for_class(inputs_dict, model_class)).waveform

Matthijs Hollemans's avatar
Matthijs Hollemans committed
215
216
217
218
    @unittest.skip("VITS is not deterministic")
    def test_determinism(self):
        pass

Sanchit Gandhi's avatar
Sanchit Gandhi committed
219
220
221
222
    @is_flaky(
        max_attempts=3,
        description="Weight initialisation for the VITS conv layers sometimes exceeds the kaiming normal range",
    )
Matthijs Hollemans's avatar
Matthijs Hollemans committed
223
224
225
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sanchit Gandhi's avatar
Sanchit Gandhi committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        uniform_init_parms = [
            "emb_rel_k",
            "emb_rel_v",
            "conv_1",
            "conv_2",
            "conv_pre",
            "conv_post",
            "conv_proj",
            "conv_dds",
            "project",
            "wavenet.in_layers",
            "wavenet.res_skip_layers",
            "upsampler",
            "resblocks",
        ]

Matthijs Hollemans's avatar
Matthijs Hollemans committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    if any(x in name for x in uniform_init_parms):
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    @unittest.skip("VITS has no inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("VITS has no input embeddings")
    def test_model_common_attributes(self):
        pass

    # override since the model is not deterministic, so we need to set the seed for each forward pass
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                set_seed(0)
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                set_seed(0)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )

    # override since the model is not deterministic, so we need to set the seed for each forward pass
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                set_seed(0)
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

                model = model_class.from_pretrained(tmpdirname)
                model.to(torch_device)
                with torch.no_grad():
                    set_seed(0)
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)

    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)


@require_torch
@slow
class VitsModelIntegrationTests(unittest.TestCase):
    def test_forward(self):
        # GPU gives different results than CPU
        torch_device = "cpu"

        model = VitsModel.from_pretrained("facebook/mms-tts-eng")
        model.to(torch_device)

        tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")

        set_seed(555)  # make deterministic

        input_text = "Mister quilter is the apostle of the middle classes and we are glad to welcome his gospel!"
        input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(torch_device)

        with torch.no_grad():
            outputs = model(input_ids)

        self.assertEqual(outputs.waveform.shape, (1, 87040))
        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                -0.0042,  0.0176,  0.0354,  0.0504,  0.0621,  0.0777,  0.0980,  0.1224,
                 0.1475,  0.1679,  0.1817,  0.1832,  0.1713,  0.1542,  0.1384,  0.1256,
                 0.1147,  0.1066,  0.1026,  0.0958,  0.0823,  0.0610,  0.0340,  0.0022,
                -0.0337, -0.0677, -0.0969, -0.1178, -0.1311, -0.1363
            ]
        )
        # fmt: on
        self.assertTrue(torch.allclose(outputs.waveform[0, 10000:10030].cpu(), EXPECTED_LOGITS, atol=1e-4))