test_modeling_tf_electra.py 10.3 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import ElectraConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Lysandre Debut's avatar
Lysandre Debut committed
21
22
23
24
25
26

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
27
28
    import tensorflow as tf

Lysandre Debut's avatar
Lysandre Debut committed
29
30
    from transformers.modeling_tf_electra import (
        TFElectraForMaskedLM,
31
        TFElectraForMultipleChoice,
Lysandre Debut's avatar
Lysandre Debut committed
32
        TFElectraForPreTraining,
33
        TFElectraForQuestionAnswering,
34
        TFElectraForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
35
        TFElectraForTokenClassification,
36
        TFElectraModel,
Lysandre Debut's avatar
Lysandre Debut committed
37
38
39
    )


40
41
class TFElectraModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Julien Plu's avatar
Julien Plu committed
67
        self.embedding_size = 128
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
100
            return_dict=True,
101
102
103
104
105
106
107
108
109
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_electra_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
110
        result = model(inputs)
111
112

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
113
        result = model(inputs)
114

Sylvain Gugger's avatar
Sylvain Gugger committed
115
        result = model(input_ids)
116

117
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
118
119
120
121
122
123

    def create_and_check_electra_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
124
        result = model(inputs)
125
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
126
127
128
129
130
131

    def create_and_check_electra_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
132
        result = model(inputs)
133
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
134

135
136
137
138
139
140
    def create_and_check_electra_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
141
        result = model(inputs)
142
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    def create_and_check_electra_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFElectraForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
157
        result = model(inputs)
158
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
159

160
161
162
163
164
    def create_and_check_electra_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
165
        result = model(inputs)
166
167
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
168

169
170
171
172
173
174
    def create_and_check_electra_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
175
        result = model(inputs)
176
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


Lysandre Debut's avatar
Lysandre Debut committed
193
194
195
196
@require_tf
class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
Julien Plu's avatar
Julien Plu committed
197
198
199
200
201
202
203
        (
            TFElectraModel,
            TFElectraForMaskedLM,
            TFElectraForPreTraining,
            TFElectraForTokenClassification,
            TFElectraForMultipleChoice,
            TFElectraForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
204
            TFElectraForQuestionAnswering,
Julien Plu's avatar
Julien Plu committed
205
        )
Lysandre Debut's avatar
Lysandre Debut committed
206
207
208
209
210
        if is_tf_available()
        else ()
    )

    def setUp(self):
211
        self.model_tester = TFElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_electra_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)

229
230
231
232
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)

233
234
235
236
237
238
239
240
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
241
242
243
244
245
246
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
247
        # for model_name in TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
248
        for model_name in ["google/electra-small-discriminator"]:
249
            model = TFElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
250
            self.assertIsNotNone(model)