test_modeling_longformer.py 25.3 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Iz Beltagy's avatar
Iz Beltagy committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Iz Beltagy's avatar
Iz Beltagy committed
24
25
26
27


if is_torch_available():
    import torch
28

Iz Beltagy's avatar
Iz Beltagy committed
29
30
31
    from transformers import (
        LongformerConfig,
        LongformerForMaskedLM,
32
33
        LongformerForMultipleChoice,
        LongformerForQuestionAnswering,
34
        LongformerForSequenceClassification,
35
        LongformerForTokenClassification,
36
        LongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
37
        LongformerSelfAttention,
Iz Beltagy's avatar
Iz Beltagy committed
38
39
40
    )


41
class LongformerModelTester:
Iz Beltagy's avatar
Iz Beltagy committed
42
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
Iz Beltagy's avatar
Iz Beltagy committed
45
46
    ):
        self.parent = parent
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4
Iz Beltagy's avatar
Iz Beltagy committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window + 1` locations
        self.key_length = self.attention_window + 1

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
87
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Iz Beltagy's avatar
Iz Beltagy committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
Sylvain Gugger's avatar
Sylvain Gugger committed
114
            return_dict=True,
Iz Beltagy's avatar
Iz Beltagy committed
115
116
117
118
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

119
120
121
122
123
124
125
126
    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
        output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
        output_without_mask = model(input_ids)["last_hidden_state"]
129
130
        self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4))

Iz Beltagy's avatar
Iz Beltagy committed
131
132
133
134
135
136
    def create_and_check_longformer_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
140
141
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Iz Beltagy's avatar
Iz Beltagy committed
142

143
144
145
146
147
148
149
150
151
152
    def create_and_check_longformer_model_with_global_attention_mask(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
        global_attention_mask = input_mask.clone()
        global_attention_mask[:, input_mask.shape[-1] // 2] = 0
        global_attention_mask = global_attention_mask.to(torch_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
153
        result = model(
154
155
156
157
158
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
161

Stas Bekman's avatar
Stas Bekman committed
162
163
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
164

Iz Beltagy's avatar
Iz Beltagy committed
165
166
167
168
169
170
    def create_and_check_longformer_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
171
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
172
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Iz Beltagy's avatar
Iz Beltagy committed
173

174
175
176
177
178
179
    def create_and_check_longformer_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
180
        result = model(
181
182
            input_ids,
            attention_mask=input_mask,
183
            global_attention_mask=input_mask,
184
185
186
187
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
188
189
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
190

191
192
193
194
195
196
197
    def create_and_check_longformer_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
198
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
199
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
200

201
202
203
204
205
206
207
    def create_and_check_longformer_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
208
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
209
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
210

211
212
213
214
215
216
217
218
219
220
    def create_and_check_longformer_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = LongformerForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
221
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
222
        result = model(
223
224
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
225
            global_attention_mask=multiple_choice_input_mask,
226
227
228
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
229
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
230

Iz Beltagy's avatar
Iz Beltagy committed
231
232
233
234
235
236
237
238
239
240
241
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
242
243
244
245
246
247
248
        global_attention_mask = torch.zeros_like(input_ids)
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
Iz Beltagy's avatar
Iz Beltagy committed
249
250
        return config, inputs_dict

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
        # Make sure there are exactly three sep_token_id
        input_ids[:, -3:] = config.sep_token_id
        input_mask = torch.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

Iz Beltagy's avatar
Iz Beltagy committed
271
272
273
274
275
276
277

@require_torch
class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
    test_pruning = False  # pruning is not supported
    test_headmasking = False  # head masking is not supported
    test_torchscript = False

278
279
280
281
    all_model_classes = (
        (
            LongformerModel,
            LongformerForMaskedLM,
282
283
284
285
            LongformerForSequenceClassification,
            LongformerForQuestionAnswering,
            LongformerForTokenClassification,
            LongformerForMultipleChoice,
286
287
288
289
        )
        if is_torch_available()
        else ()
    )
Iz Beltagy's avatar
Iz Beltagy committed
290
291
292
293
294
295
296
297
298
299
300
301

    def setUp(self):
        self.model_tester = LongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_longformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model(*config_and_inputs)

302
303
304
305
306
307
308
309
    def test_longformer_model_attention_mask_determinism(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

    def test_longformer_model_global_attention_mask(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model_with_global_attention_mask(*config_and_inputs)

Iz Beltagy's avatar
Iz Beltagy committed
310
311
312
313
    def test_longformer_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_masked_lm(*config_and_inputs)

314
315
316
317
    def test_longformer_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
        self.model_tester.create_and_check_longformer_for_question_answering(*config_and_inputs)

318
319
320
321
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_sequence_classification(*config_and_inputs)

322
323
324
325
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_token_classification(*config_and_inputs)

326
327
328
329
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_multiple_choice(*config_and_inputs)

Iz Beltagy's avatar
Iz Beltagy committed
330

Patrick von Platen's avatar
Patrick von Platen committed
331
@require_torch
Iz Beltagy's avatar
Iz Beltagy committed
332
class LongformerModelIntegrationTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = hidden_states.reshape((1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = chunked_hidden_states.shape[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, 0, 4:],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )
        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, -1, :3],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(hidden_states.shape, (1, 8, 4))
        padding = (0, 0, 0, 1)

        padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
        self.assertTrue(padded_hidden_states.shape, (1, 8, 5))

        expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
        self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
        self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))

        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = torch.tensor(
            [0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
        )
        expected_slice_along_chunk = torch.tensor(
            [0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
        )

        self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
        self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
        self.assertTrue(chunked_hidden_states.shape, (1, 3, 4, 4))

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()

        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
        self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)

        hid_states_2 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
        self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)

        hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
        LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
        self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)

        hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
        LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
        self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)

    def test_layer_local_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.size()
        attention_mask = torch.zeros((batch_size, 1, 1, seq_length), dtype=torch.float32, device=torch_device)
        attention_mask[:, :, :, -2:] = -10000
        output_hidden_states = layer(hidden_states, attention_mask)[0]

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 1],
                torch.tensor(
                    [0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

    def test_layer_global_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
        attention_mask = torch.zeros((batch_size, 1, 1, seq_length), dtype=torch.float32, device=torch_device)

        # create attn mask
        attention_mask[0, :, :, -2:] = 10000.0
        attention_mask[0, :, :, -1:] = -10000.0
        attention_mask[1, :, :, 1:] = 10000.0
        output_hidden_states = layer(hidden_states, attention_mask)[0]

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))

        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 2],
                torch.tensor(
                    [-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                output_hidden_states[1, -2],
                torch.tensor(
                    [-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

Iz Beltagy's avatar
Iz Beltagy committed
534
535
    @slow
    def test_inference_no_head(self):
536
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
537
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        # 'Hello world!'
        input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device)
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device)
        self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4))
        self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4))

    @slow
    def test_inference_no_head_long(self):
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
        model.to(torch_device)

Iz Beltagy's avatar
Iz Beltagy committed
554
        # 'Hello world! ' repeated 1000 times
555
556
557
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Iz Beltagy's avatar
Iz Beltagy committed
558
559

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
560
561
        global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device)
        global_attention_mask[:, [1, 4, 21]] = 1  # Set global attention on a few random positions
Iz Beltagy's avatar
Iz Beltagy committed
562

563
        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
Iz Beltagy's avatar
Iz Beltagy committed
564

565
566
        expected_output_sum = torch.tensor(74585.8594, device=torch_device)
        expected_output_mean = torch.tensor(0.0243, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
567
568
569
570
        self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
        self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))

    @slow
571
    def test_inference_masked_lm_long(self):
572
        model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
573
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
574
575

        # 'Hello world! ' repeated 1000 times
576
577
578
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Patrick von Platen's avatar
Patrick von Platen committed
579
        input_ids = input_ids.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
580

581
        loss, prediction_scores = model(input_ids, labels=input_ids)
Iz Beltagy's avatar
Iz Beltagy committed
582

583
584
585
        expected_loss = torch.tensor(0.0074, device=torch_device)
        expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
        expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
586
587
588
589

        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))