configuration_xxx.py 5.16 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2010, XXX authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XXX model configuration """


import logging
19
from typing import Callable, Union
thomwolf's avatar
thomwolf committed
20
21
22

from .configuration_utils import PretrainedConfig

Aymeric Augustin's avatar
Aymeric Augustin committed
23

thomwolf's avatar
thomwolf committed
24
25
26
logger = logging.getLogger(__name__)

XXX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
27
28
    "xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-config.json",
    "xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-config.json",
thomwolf's avatar
thomwolf committed
29
30
31
32
33
}


class XxxConfig(PretrainedConfig):
    r"""
Lysandre's avatar
Lysandre committed
34
35
36
37
    This is the configuration class to store the configuration of a :class:`~transformers.XXXModel`.
    It is used to instantiate a XXX model according to the specified arguments, defining the model
    architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the XXX `xxx-base-uncased <https://huggingface.co/xxx/xxx-base-uncased>`__ architecture.
thomwolf's avatar
thomwolf committed
38

Lysandre's avatar
Lysandre committed
39
40
41
    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used
    to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig`
    for more information.
thomwolf's avatar
thomwolf committed
42

43

Lysandre's avatar
Lysandre committed
44
45
46
47
48
49
50
51
52
53
54
55
    Args:
        vocab_size (:obj:`int`, optional, defaults to 30522):
            Vocabulary size of the XXX model. Defines the different tokens that
            can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.XXXModel`.
        hidden_size (:obj:`int`, optional, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (:obj:`int`, optional, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (:obj:`int`, optional, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (:obj:`str` or :obj:`function`, optional, defaults to :obj:`"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler.
56

Lysandre's avatar
Lysandre committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
            If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"swish"` and :obj:`"gelu_new"` are supported.
        hidden_dropout_prob (:obj:`float`, optional, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (:obj:`int`, optional, defaults to 512):
            The maximum sequence length that this model might ever be used with.
            Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (:obj:`int`, optional, defaults to 2):
            The vocabulary size of the `token_type_ids` passed into :class:`~transformers.BertModel`.
        initializer_range (:obj:`float`, optional, defaults to 0.02):
            The standard deviation of the :obj:`truncated_normal_initializer` for initializing all weight matrices.
        layer_norm_eps (:obj:`float`, optional, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        gradient_checkpointing (:obj:`bool`, optional, defaults to :obj:`False`):
            If :obj:`True`, use gradient checkpointing to save memory at the expense of slower backward pass.
        kwargs:
            Additional arguments for common configurations, passed to :class:`~transformers.PretrainedConfig`.
thomwolf's avatar
thomwolf committed
75
    """
Julien Chaumond's avatar
Julien Chaumond committed
76
    model_type = "xxx"
thomwolf's avatar
thomwolf committed
77

78
79
    def __init__(
        self,
80
81
82
83
84
85
86
87
88
89
90
91
        vocab_size: int = 50257,
        hidden_size: int = 1024,
        num_hidden_layers: int = 12,
        num_attention_heads: int = 12,
        hidden_act: Union[str, Callable] = "gelu",
        hidden_dropout_prob: float = 0.1,
        attention_probs_dropout_prob: float = 0.1,
        max_position_embeddings: int = 512,
        type_vocab_size: int = 2,
        initializer_range: float = 0.02,
        layer_norm_epsilon: float = 1e-5,
        gradient_checkpointing: bool = False,
92
93
        **kwargs
    ):
Julien Chaumond's avatar
Julien Chaumond committed
94
        super().__init__(**kwargs)
95
        self.vocab_size = vocab_size
96
97
98
99
100
101
102
103
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
thomwolf's avatar
thomwolf committed
104
        self.initializer_range = initializer_range
105
106
        self.layer_norm_epsilon = layer_norm_epsilon
        self.gradient_checkpointing = gradient_checkpointing