test_feature_extraction_clip.py 11.1 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
23

Yih-Dar's avatar
Yih-Dar committed
24
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
Suraj Patil's avatar
Suraj Patil committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import CLIPFeatureExtractor


class CLIPFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
Suraj Patil's avatar
Suraj Patil committed
47
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
48
        crop_size=None,
Suraj Patil's avatar
Suraj Patil committed
49
50
51
        do_normalize=True,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
        image_std=[0.26862954, 0.26130258, 0.27577711],
52
        do_convert_rgb=True,
Suraj Patil's avatar
Suraj Patil committed
53
    ):
amyeroberts's avatar
amyeroberts committed
54
55
        size = size if size is not None else {"shortest_edge": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
Suraj Patil's avatar
Suraj Patil committed
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
69
        self.do_convert_rgb = do_convert_rgb
Suraj Patil's avatar
Suraj Patil committed
70
71
72
73
74
75
76
77
78
79

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
80
            "do_convert_rgb": self.do_convert_rgb,
Suraj Patil's avatar
Suraj Patil committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        }

    def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        if equal_resolution:
            image_inputs = []
            for i in range(self.batch_size):
                image_inputs.append(
                    np.random.randint(
                        255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
                    )
                )
        else:
            image_inputs = []
            for i in range(self.batch_size):
                width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
                image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        if torchify:
            image_inputs = [torch.from_numpy(x) for x in image_inputs]

        return image_inputs


@require_torch
@require_vision
class CLIPFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = CLIPFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = CLIPFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
        self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
        self.assertTrue(hasattr(feature_extractor, "center_crop"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
136
        self.assertTrue(hasattr(feature_extractor, "do_convert_rgb"))
Suraj Patil's avatar
Suraj Patil committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
156
157
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
158
159
160
161
162
163
164
165
166
167
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
168
169
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
188
189
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
190
191
192
193
194
195
196
197
198
199
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
200
201
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
220
221
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
222
223
224
225
226
227
228
229
230
231
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
232
233
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
234
235
            ),
        )
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280


@require_torch
@require_vision
class CLIPFeatureExtractionTestFourChannels(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = CLIPFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = CLIPFeatureExtractionTester(self, num_channels=4)
        self.expected_encoded_image_num_channels = 3

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
        self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
        self.assertTrue(hasattr(feature_extractor, "center_crop"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_convert_rgb"))

    def test_batch_feature(self):
        pass

    def test_call_pil_four_channels(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.expected_encoded_image_num_channels,
amyeroberts's avatar
amyeroberts committed
281
282
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
283
284
285
286
287
288
289
290
291
292
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.expected_encoded_image_num_channels,
amyeroberts's avatar
amyeroberts committed
293
294
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
295
296
            ),
        )