test_feature_extraction_beit.py 12.7 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
20
from datasets import load_dataset
NielsRogge's avatar
NielsRogge committed
21
22

from transformers.testing_utils import require_torch, require_vision
23
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
24

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import BeitFeatureExtractor


class BeitFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
47
        size=None,
NielsRogge's avatar
NielsRogge committed
48
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
49
        crop_size=None,
NielsRogge's avatar
NielsRogge committed
50
51
52
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
amyeroberts's avatar
amyeroberts committed
53
        do_reduce_labels=False,
NielsRogge's avatar
NielsRogge committed
54
    ):
amyeroberts's avatar
amyeroberts committed
55
56
        size = size if size is not None else {"height": 20, "width": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
NielsRogge's avatar
NielsRogge committed
57
58
59
60
61
62
63
64
65
66
67
68
69
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
amyeroberts's avatar
amyeroberts committed
70
        self.do_reduce_labels = do_reduce_labels
NielsRogge's avatar
NielsRogge committed
71
72
73
74
75
76
77
78
79
80

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
amyeroberts's avatar
amyeroberts committed
81
            "do_reduce_labels": self.do_reduce_labels,
NielsRogge's avatar
NielsRogge committed
82
83
84
        }


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def prepare_semantic_single_inputs():
    dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image = Image.open(dataset[0]["file"])
    map = Image.open(dataset[1]["file"])

    return image, map


def prepare_semantic_batch_inputs():
    ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image1 = Image.open(ds[0]["file"])
    map1 = Image.open(ds[1]["file"])
    image2 = Image.open(ds[2]["file"])
    map2 = Image.open(ds[3]["file"])

    return [image1, image2], [map1, map2]


NielsRogge's avatar
NielsRogge committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
@require_torch
@require_vision
class BeitFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = BeitFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = BeitFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
        self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
        self.assertTrue(hasattr(feature_extractor, "center_crop"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
146
147
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
148
149
150
151
152
153
154
155
156
157
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
158
159
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
178
179
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
180
181
182
183
184
185
186
187
188
189
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
190
191
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
210
211
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
212
213
214
215
216
217
218
219
220
221
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
222
223
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
224
225
            ),
        )
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    def test_call_segmentation_maps(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        maps = []
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)
            maps.append(torch.zeros(image.shape[-2:]).long())

        # Test not batched input
        encoding = feature_extractor(image_inputs[0], maps[0], return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
244
245
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
246
247
248
249
250
251
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
amyeroberts's avatar
amyeroberts committed
252
253
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
254
255
256
257
258
259
260
261
262
263
264
265
266
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched
        encoding = feature_extractor(image_inputs, maps, return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
267
268
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
269
270
271
272
273
274
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                self.feature_extract_tester.batch_size,
amyeroberts's avatar
amyeroberts committed
275
276
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test not batched input (PIL images)
        image, segmentation_map = prepare_semantic_single_inputs()

        encoding = feature_extractor(image, segmentation_map, return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
292
293
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
294
295
296
297
298
299
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
amyeroberts's avatar
amyeroberts committed
300
301
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched input (PIL images)
        images, segmentation_maps = prepare_semantic_batch_inputs()

        encoding = feature_extractor(images, segmentation_maps, return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                2,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
317
318
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
319
320
321
322
323
324
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                2,
amyeroberts's avatar
amyeroberts committed
325
326
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

    def test_reduce_labels(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)

        # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
        image, map = prepare_semantic_single_inputs()
        encoding = feature_extractor(image, map, return_tensors="pt")
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 150)

        feature_extractor.reduce_labels = True
        encoding = feature_extractor(image, map, return_tensors="pt")
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)