check_config_attributes.py 14.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import re
19

20
from transformers.configuration_utils import PretrainedConfig
21
from transformers.utils import direct_transformers_import
22
23
24
25
26
27
28
29


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
PATH_TO_TRANSFORMERS = "src/transformers"


# This is to make sure the transformers module imported is the one in the repo.
30
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
31
32
33
34

CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING

SPECIAL_CASES_TO_ALLOW = {
tomeras91's avatar
tomeras91 committed
35
36
37
38
39
40
41
42
43
    # 'max_position_embeddings' is not used in modeling file, but needed for eval frameworks like Huggingface's lighteval (https://github.com/huggingface/lighteval/blob/af24080ea4f16eaf1683e353042a2dfc9099f038/src/lighteval/models/base_model.py#L264).
    # periods and offsers are not used in modeling file, but used in the configuration file to define `layers_block_type` and `layers_num_experts`.
    "JambaConfig": [
        "max_position_embeddings",
        "attn_layer_offset",
        "attn_layer_period",
        "expert_layer_offset",
        "expert_layer_period",
    ],
44
45
    # used to compute the property `self.chunk_length`
    "EncodecConfig": ["overlap"],
Arthur's avatar
Arthur committed
46
47
    # used to compute the property `self.layers_block_type`
    "RecurrentGemmaConfig": ["block_types"],
48
49
    # used as in the config to define `intermediate_size`
    "MambaConfig": ["expand"],
50
51
    # used as `self.bert_model = BertModel(config, ...)`
    "DPRConfig": True,
Pablo Montalvo's avatar
Pablo Montalvo committed
52
    "FuyuConfig": True,
53
54
55
56
57
58
59
60
    # not used in modeling files, but it's an important information
    "FSMTConfig": ["langs"],
    # used internally in the configuration class file
    "GPTNeoConfig": ["attention_types"],
    # used internally in the configuration class file
    "EsmConfig": ["is_folding_model"],
    # used during training (despite we don't have training script for these models yet)
    "Mask2FormerConfig": ["ignore_value"],
61
62
63
    # `ignore_value` used during training (despite we don't have training script for these models yet)
    # `norm` used in conversion script (despite not using in the modeling file)
    "OneFormerConfig": ["ignore_value", "norm"],
64
65
66
    # used internally in the configuration class file
    "T5Config": ["feed_forward_proj"],
    # used internally in the configuration class file
67
68
    # `tokenizer_class` get default value `T5Tokenizer` intentionally
    "MT5Config": ["feed_forward_proj", "tokenizer_class"],
69
    "UMT5Config": ["feed_forward_proj", "tokenizer_class"],
70
    # used internally in the configuration class file
71
72
    "LongT5Config": ["feed_forward_proj"],
    # used internally in the configuration class file
Susnato Dhar's avatar
Susnato Dhar committed
73
74
    "Pop2PianoConfig": ["feed_forward_proj"],
    # used internally in the configuration class file
75
76
77
78
79
80
81
82
83
84
85
    "SwitchTransformersConfig": ["feed_forward_proj"],
    # having default values other than `1e-5` - we can't fix them without breaking
    "BioGptConfig": ["layer_norm_eps"],
    # having default values other than `1e-5` - we can't fix them without breaking
    "GLPNConfig": ["layer_norm_eps"],
    # having default values other than `1e-5` - we can't fix them without breaking
    "SegformerConfig": ["layer_norm_eps"],
    # having default values other than `1e-5` - we can't fix them without breaking
    "CvtConfig": ["layer_norm_eps"],
    # having default values other than `1e-5` - we can't fix them without breaking
    "PerceiverConfig": ["layer_norm_eps"],
86
87
88
89
    # used internally to calculate the feature size
    "InformerConfig": ["num_static_real_features", "num_time_features"],
    # used internally to calculate the feature size
    "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
90
91
    # used internally to calculate the feature size
    "AutoformerConfig": ["num_static_real_features", "num_time_features"],
92
93
94
95
96
97
    # used internally to calculate `mlp_dim`
    "SamVisionConfig": ["mlp_ratio"],
    # For (head) training, but so far not implemented
    "ClapAudioConfig": ["num_classes"],
    # Not used, but providing useful information to users
    "SpeechT5HifiGanConfig": ["sampling_rate"],
NielsRogge's avatar
NielsRogge committed
98
99
    # used internally in the configuration class file
    "UdopConfig": ["feed_forward_proj"],
100
101
102
103
104
105
106
107
108
109
110
111
    # Actually used in the config or generation config, in that case necessary for the sub-components generation
    "SeamlessM4TConfig": [
        "max_new_tokens",
        "t2u_max_new_tokens",
        "t2u_decoder_attention_heads",
        "t2u_decoder_ffn_dim",
        "t2u_decoder_layers",
        "t2u_encoder_attention_heads",
        "t2u_encoder_ffn_dim",
        "t2u_encoder_layers",
        "t2u_max_position_embeddings",
    ],
Yoach Lacombe's avatar
Yoach Lacombe committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    # Actually used in the config or generation config, in that case necessary for the sub-components generation
    "SeamlessM4Tv2Config": [
        "max_new_tokens",
        "t2u_decoder_attention_heads",
        "t2u_decoder_ffn_dim",
        "t2u_decoder_layers",
        "t2u_encoder_attention_heads",
        "t2u_encoder_ffn_dim",
        "t2u_encoder_layers",
        "t2u_max_position_embeddings",
        "t2u_variance_pred_dropout",
        "t2u_variance_predictor_embed_dim",
        "t2u_variance_predictor_hidden_dim",
        "t2u_variance_predictor_kernel_size",
    ],
127
128
}

amyeroberts's avatar
amyeroberts committed
129

130
131
132
133
134
135
136
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
    {
        "CLIPSegConfig": True,
        "DeformableDetrConfig": True,
        "DinatConfig": True,
        "DonutSwinConfig": True,
137
        "FastSpeech2ConformerConfig": True,
138
139
140
141
        "FSMTConfig": True,
        "LayoutLMv2Config": True,
        "MaskFormerSwinConfig": True,
        "MT5Config": True,
142
143
144
        # For backward compatibility with trust remote code models
        "MptConfig": True,
        "MptAttentionConfig": True,
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        "OneFormerConfig": True,
        "PerceiverConfig": True,
        "RagConfig": True,
        "SpeechT5Config": True,
        "SwinConfig": True,
        "Swin2SRConfig": True,
        "Swinv2Config": True,
        "SwitchTransformersConfig": True,
        "TableTransformerConfig": True,
        "TapasConfig": True,
        "UniSpeechConfig": True,
        "UniSpeechSatConfig": True,
        "WavLMConfig": True,
        "WhisperConfig": True,
159
160
161
162
        # TODO: @Arthur (for `alignment_head` and `alignment_layer`)
        "JukeboxPriorConfig": True,
        # TODO: @Younes (for `is_decoder`)
        "Pix2StructTextConfig": True,
163
164
165
        "IdeficsConfig": True,
        "IdeficsVisionConfig": True,
        "IdeficsPerceiverConfig": True,
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    }
)


def check_attribute_being_used(config_class, attributes, default_value, source_strings):
    """Check if any name in `attributes` is used in one of the strings in `source_strings`

    Args:
        config_class (`type`):
            The configuration class for which the arguments in its `__init__` will be checked.
        attributes (`List[str]`):
            The name of an argument (or attribute) and its variant names if any.
        default_value (`Any`):
            A default value for the attribute in `attributes` assigned in the `__init__` of `config_class`.
        source_strings (`List[str]`):
            The python source code strings in the same modeling directory where `config_class` is defined. The file
            containing the definition of `config_class` should be excluded.
    """
    attribute_used = False
    for attribute in attributes:
        for modeling_source in source_strings:
            # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
            if (
                f"config.{attribute}" in modeling_source
                or f'getattr(config, "{attribute}"' in modeling_source
                or f'getattr(self.config, "{attribute}"' in modeling_source
            ):
                attribute_used = True
            # Deal with multi-line cases
            elif (
                re.search(
                    rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"',
                    modeling_source,
                )
                is not None
            ):
                attribute_used = True
            # `SequenceSummary` is called with `SequenceSummary(config)`
            elif attribute in [
                "summary_type",
                "summary_use_proj",
                "summary_activation",
                "summary_last_dropout",
                "summary_proj_to_labels",
                "summary_first_dropout",
            ]:
                if "SequenceSummary" in modeling_source:
                    attribute_used = True
            if attribute_used:
                break
        if attribute_used:
            break

    # common and important attributes, even if they do not always appear in the modeling files
    attributes_to_allow = [
        "bos_index",
        "eos_index",
        "pad_index",
        "unk_index",
        "mask_index",
        "image_size",
        "use_cache",
amyeroberts's avatar
amyeroberts committed
228
229
        "out_features",
        "out_indices",
Matthijs Hollemans's avatar
Matthijs Hollemans committed
230
        "sampling_rate",
231
        # backbone related arguments passed to load_backbone
232
        "use_pretrained_backbone",
233
234
235
        "backbone",
        "backbone_config",
        "use_timm_backbone",
236
        "backbone_kwargs",
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    ]
    attributes_used_in_generation = ["encoder_no_repeat_ngram_size"]

    # Special cases to be allowed
    case_allowed = True
    if not attribute_used:
        case_allowed = False
        for attribute in attributes:
            # Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
            if attribute in ["is_encoder_decoder"] and default_value is True:
                case_allowed = True
            elif attribute in ["tie_word_embeddings"] and default_value is False:
                case_allowed = True

            # Allow cases without checking the default value in the configuration class
            elif attribute in attributes_to_allow + attributes_used_in_generation:
                case_allowed = True
            elif attribute.endswith("_token_id"):
                case_allowed = True

            # configuration class specific cases
            if not case_allowed:
                allowed_cases = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [])
                case_allowed = allowed_cases is True or attribute in allowed_cases

    return attribute_used or case_allowed


def check_config_attributes_being_used(config_class):
    """Check the arguments in `__init__` of `config_class` are used in the modeling files in the same directory

    Args:
        config_class (`type`):
            The configuration class for which the arguments in its `__init__` will be checked.
    """
    # Get the parameters in `__init__` of the configuration class, and the default values if any
    signature = dict(inspect.signature(config_class.__init__).parameters)
    parameter_names = [x for x in list(signature.keys()) if x not in ["self", "kwargs"]]
    parameter_defaults = [signature[param].default for param in parameter_names]

    # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
    # as one variant is used, the test should pass
    reversed_attribute_map = {}
    if len(config_class.attribute_map) > 0:
        reversed_attribute_map = {v: k for k, v in config_class.attribute_map.items()}

    # Get the path to modeling source files
    config_source_file = inspect.getsourcefile(config_class)
    model_dir = os.path.dirname(config_source_file)
    # Let's check against all frameworks: as long as one framework uses an attribute, we are good.
    modeling_paths = [os.path.join(model_dir, fn) for fn in os.listdir(model_dir) if fn.startswith("modeling_")]

    # Get the source code strings
    modeling_sources = []
    for path in modeling_paths:
        if os.path.isfile(path):
293
            with open(path, encoding="utf8") as fp:
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
                modeling_sources.append(fp.read())

    unused_attributes = []
    for config_param, default_value in zip(parameter_names, parameter_defaults):
        # `attributes` here is all the variant names for `config_param`
        attributes = [config_param]
        # some configuration classes have non-empty `attribute_map`, and both names could be used in the
        # corresponding modeling files. As long as one of them appears, it is fine.
        if config_param in reversed_attribute_map:
            attributes.append(reversed_attribute_map[config_param])

        if not check_attribute_being_used(config_class, attributes, default_value, modeling_sources):
            unused_attributes.append(attributes[0])

    return sorted(unused_attributes)


def check_config_attributes():
    """Check the arguments in `__init__` of all configuration classes are used in  python files"""
    configs_with_unused_attributes = {}
314
    for _config_class in list(CONFIG_MAPPING.values()):
Sylvain Gugger's avatar
Sylvain Gugger committed
315
316
317
        # Skip deprecated models
        if "models.deprecated" in _config_class.__module__:
            continue
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
        config_classes_in_module = [
            cls
            for name, cls in inspect.getmembers(
                inspect.getmodule(_config_class),
                lambda x: inspect.isclass(x)
                and issubclass(x, PretrainedConfig)
                and inspect.getmodule(x) == inspect.getmodule(_config_class),
            )
        ]
        for config_class in config_classes_in_module:
            unused_attributes = check_config_attributes_being_used(config_class)
            if len(unused_attributes) > 0:
                configs_with_unused_attributes[config_class.__name__] = unused_attributes
332
333
334
335
336
337
338
339
340
341
342

    if len(configs_with_unused_attributes) > 0:
        error = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
        for name, attributes in configs_with_unused_attributes.items():
            error += f"{name}: {attributes}\n"

        raise ValueError(error)


if __name__ == "__main__":
    check_config_attributes()