perf_infer_gpu_one.md 19.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
11
12
13

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

14
15
-->

16
# GPU inference
17

18
GPUs are the standard choice of hardware for machine learning, unlike CPUs, because they are optimized for memory bandwidth and parallelism. To keep up with the larger sizes of modern models or to run these large models on existing and older hardware, there are several optimizations you can use to speed up GPU inference. In this guide, you'll learn how to use FlashAttention-2 (a more memory-efficient attention mechanism), BetterTransformer (a PyTorch native fastpath execution), and bitsandbytes to quantize your model to a lower precision. Finally, learn how to use 馃 Optimum to accelerate inference with ONNX Runtime on Nvidia and AMD GPUs.
19
20
21

<Tip>

22
The majority of the optimizations described here also apply to multi-GPU setups!
23
24
25

</Tip>

26
## FlashAttention-2
27

28
<Tip>
29

30
FlashAttention-2 is experimental and may change considerably in future versions.
31

32
</Tip>
33

34
[FlashAttention-2](https://huggingface.co/papers/2205.14135) is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference by:
35

36
37
1. additionally parallelizing the attention computation over sequence length
2. partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them
38

39
40
41
42
43
44
45
46
47
48
FlashAttention-2 is currently supported for the following architectures:
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel)
* [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel)
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Llava](https://huggingface.co/docs/transformers/model_doc/llava)
49
* [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)
50
51
* [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel)
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
52
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
53
54
55
56
57
* [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel)
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)

You can request to add FlashAttention-2 support for another model by opening a GitHub Issue or Pull Request.
58

Steven Liu's avatar
Steven Liu committed
59
Before you begin, make sure you have FlashAttention-2 installed.
60

Steven Liu's avatar
Steven Liu committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
<hfoptions id="install">
<hfoption id="NVIDIA">

```bash
pip install flash-attn --no-build-isolation
```

We strongly suggest referring to the detailed [installation instructions](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) to learn more about supported hardware and data types!

</hfoption>
<hfoption id="AMD">

FlashAttention-2 is also supported on AMD GPUs and current support is limited to **Instinct MI210** and **Instinct MI250**. We strongly suggest using this [Dockerfile](https://github.com/huggingface/optimum-amd/tree/main/docker/transformers-pytorch-amd-gpu-flash/Dockerfile) to use FlashAttention-2 on AMD GPUs.

</hfoption>
</hfoptions>
77

78
To enable FlashAttention-2, pass the argument `attn_implementation="flash_attention_2"` to [`~AutoModelForCausalLM.from_pretrained`]:
79
80
81
82
83
84
85
86
87
88
89

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=torch.bfloat16, 
90
    attn_implementation="flash_attention_2",
91
92
93
)
```

94
<Tip>
95

96
FlashAttention-2 can only be used when the model's dtype is `fp16` or `bf16`. Make sure to cast your model to the appropriate dtype and load them on a supported device before using FlashAttention-2.
97

Steven Liu's avatar
Steven Liu committed
98
99
100
<br>

You can also set `use_flash_attention_2=True` to enable FlashAttention-2 but it is deprecated in favor of `attn_implementation="flash_attention_2"`.
101
102
  
</Tip>
103

104
FlashAttention-2 can be combined with other optimization techniques like quantization to further speedup inference. For example, you can combine FlashAttention-2 with 8-bit or 4-bit quantization:
105

106
```py
107
108
109
110
111
112
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

113
# load in 8bit
114
115
116
model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    load_in_8bit=True,
117
    attn_implementation="flash_attention_2",
118
119
)

120
# load in 4bit
121
122
123
model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    load_in_4bit=True,
124
    attn_implementation="flash_attention_2",
125
126
127
)
```

128
### Expected speedups
129

130
You can benefit from considerable speedups for inference, especially for inputs with long sequences. However, since FlashAttention-2 does not support computing attention scores with padding tokens, you must manually pad/unpad the attention scores for batched inference when the sequence contains padding tokens. This leads to a significant slowdown for batched generations with padding tokens.
131

132
To overcome this, you should use FlashAttention-2 without padding tokens in the sequence during training (by packing a dataset or [concatenating sequences](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516) until reaching the maximum sequence length).
133

134
For a single forward pass on [tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
135

136
137
138
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png">
</div>
139

140
For a single forward pass on [meta-llama/Llama-7b-hf](https://hf.co/meta-llama/Llama-7b-hf) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
141

142
143
144
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png">
</div>
145

146
For sequences with padding tokens (generating with padding tokens), you need to unpad/pad the input sequences to correctly compute the attention scores. With a relatively small sequence length, a single forward pass creates overhead leading to a small speedup (in the example below, 30% of the input is filled with padding tokens):
147

148
149
150
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png">
</div>
151

152
But for larger sequence lengths, you can expect even more speedup benefits:
153
154
155

<Tip>

156
FlashAttention is more memory efficient, meaning you can train on much larger sequence lengths without running into out-of-memory issues. You can potentially reduce memory usage up to 20x for larger sequence lengths. Take a look at the [flash-attention](https://github.com/Dao-AILab/flash-attention) repository for more details.
157

158
</Tip>
Younes Belkada's avatar
Younes Belkada committed
159

160
161
162
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png">
</div>
163

Steven Liu's avatar
Steven Liu committed
164
## PyTorch scaled dot product attention
165

Steven Liu's avatar
Steven Liu committed
166
PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA) can also call FlashAttention and memory-efficient attention kernels under the hood. SDPA support is currently being added natively in Transformers and is used by default for `torch>=2.1.1` when an implementation is available.
167

Steven Liu's avatar
Steven Liu committed
168
For now, Transformers supports SDPA inference and training for the following architectures:
169
170
171
172
173
174
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel)
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
175

Steven Liu's avatar
Steven Liu committed
176
177
178
<Tip>

FlashAttention can only be used for models with the `fp16` or `bf16` torch type, so make sure to cast your model to the appropriate type first.
179

Steven Liu's avatar
Steven Liu committed
180
181
182
</Tip>

By default, SDPA selects the most performant kernel available but you can check whether a backend is available in a given setting (hardware, problem size) with [`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager:
183
184
185
186
187
188

```diff
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
189
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda")
190
191
192
193
194
195
196
197
198
199
200
201
# convert the model to BetterTransformer
model.to_bettertransformer()

input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Steven Liu's avatar
Steven Liu committed
202
If you see a bug with the traceback below, try using the nightly version of PyTorch which may have broader coverage for FlashAttention:
203
204

```bash
205
RuntimeError: No available kernel. Aborting execution.
206

207
# install PyTorch nightly
208
209
210
pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
```

211
212
213
214
## BetterTransformer

<Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
215
Some BetterTransformer features are being upstreamed to Transformers with default support for native `torch.nn.scaled_dot_product_attention`. BetterTransformer still has a wider coverage than the Transformers SDPA integration, but you can expect more and more architectures to natively support SDPA in Transformers.
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

</Tip>

<Tip>

Check out our benchmarks with BetterTransformer and scaled dot product attention in the [Out of the box acceleration and memory savings of 馃 decoder models with PyTorch 2.0](https://pytorch.org/blog/out-of-the-box-acceleration/) and learn more about the fastpath execution in the [BetterTransformer](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2) blog post.

</Tip>

BetterTransformer accelerates inference with its fastpath (native PyTorch specialized implementation of Transformer functions) execution. The two optimizations in the fastpath execution are:

1. fusion, which combines multiple sequential operations into a single "kernel" to reduce the number of computation steps
2. skipping the inherent sparsity of padding tokens to avoid unnecessary computation with nested tensors

BetterTransformer also converts all attention operations to use the more memory-efficient [scaled dot product attention (SDPA)](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention), and it calls optimized kernels like [FlashAttention](https://huggingface.co/papers/2205.14135) under the hood.

Before you start, make sure you have 馃 Optimum [installed](https://huggingface.co/docs/optimum/installation).

Then you can enable BetterTransformer with the [`PreTrainedModel.to_bettertransformer`] method:

```python
model = model.to_bettertransformer()
```

You can return the original Transformers model with the [`~PreTrainedModel.reverse_bettertransformer`] method. You should use this before saving your model to use the canonical Transformers modeling:

```py
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```

247
## bitsandbytes
248

249
bitsandbytes is a quantization library that includes support for 4-bit and 8-bit quantization. Quantization reduces your model size compared to its native full precision version, making it easier to fit large models onto GPUs with limited memory.
250

Stas Bekman's avatar
Stas Bekman committed
251
Make sure you have bitsandbytes and 馃 Accelerate installed:
252

253
254
255
```bash
# these versions support 8-bit and 4-bit
pip install bitsandbytes>=0.39.0 accelerate>=0.20.0
256

257
258
259
# install Transformers
pip install transformers
```
260

261
### 4-bit
262

263
To load a model in 4-bit for inference, use the `load_in_4bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment.
264
265
266
267
268

```py
from transformers import AutoModelForCausalLM

model_name = "bigscience/bloom-2b5"
269
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
270
271
```

272
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 600MB of memory to the first GPU and 1GB of memory to the second GPU:
273
274
275
276

```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
277
model_4bit = AutoModelForCausalLM.from_pretrained(
278
279
280
281
    model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```

282
### 8-bit
283

284
<Tip>
285

286
If you're curious and interested in learning more about the concepts underlying 8-bit quantization, read the [Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes](https://huggingface.co/blog/hf-bitsandbytes-integration) blog post.
287
288
289

</Tip>

290
To load a model in 8-bit for inference, use the `load_in_8bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment:
291

292
```py
293
294
from transformers import AutoModelForCausalLM

295
296
297
298
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```

299
If you're loading a model in 8-bit for text generation, you should use the [`~transformers.GenerationMixin.generate`] method instead of the [`Pipeline`] function which is not optimized for 8-bit models and will be slower. Some sampling strategies, like nucleus sampling, are also not supported by the [`Pipeline`] for 8-bit models. You should also place all inputs on the same device as the model:
300
301
302
303
304
305
306
307

```py
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)

308
prompt = "Hello, my llama is cute"
309
310
311
312
313
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```

314
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 1GB of memory to the first GPU and 2GB of memory to the second GPU:
315
316
317
318
319
320
321
322
323

```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
    model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```

324
<Tip>
325

326
Feel free to try running a 11 billion parameter [T5 model](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) or the 3 billion parameter [BLOOM model](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing) for inference on Google Colab's free tier GPUs!
327

328
</Tip>
329

330
## 馃 Optimum
331

332
333
<Tip>

334
Learn more details about using ORT with 馃 Optimum in the [Accelerated inference on NVIDIA GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#accelerated-inference-on-nvidia-gpus) and [Accelerated inference on AMD GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu#accelerated-inference-on-amd-gpus) guides. This section only provides a brief and simple example.
335
336
337

</Tip>

338
ONNX Runtime (ORT) is a model accelerator that supports accelerated inference on Nvidia GPUs, and AMD GPUs that use [ROCm](https://www.amd.com/en/products/software/rocm.html) stack. ORT uses optimization techniques like fusing common operations into a single node and constant folding to reduce the number of computations performed and speedup inference. ORT also places the most computationally intensive operations on the GPU and the rest on the CPU to intelligently distribute the workload between the two devices.
339

340
ORT is supported by 馃 Optimum which can be used in 馃 Transformers. You'll need to use an [`~optimum.onnxruntime.ORTModel`] for the task you're solving, and specify the `provider` parameter which can be set to either [`CUDAExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#cudaexecutionprovider), [`ROCMExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu) or [`TensorrtExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#tensorrtexecutionprovider). If you want to load a model that was not yet exported to ONNX, you can set `export=True` to convert your model on-the-fly to the ONNX format:
341
342
343
344
345
346
347
348
349
350

```py
from optimum.onnxruntime import ORTModelForSequenceClassification

ort_model = ORTModelForSequenceClassification.from_pretrained(
  "distilbert-base-uncased-finetuned-sst-2-english",
  export=True,
  provider="CUDAExecutionProvider",
)
```
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
Now you're free to use the model for inference:

```py
from optimum.pipelines import pipeline
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")

pipeline = pipeline(task="text-classification", model=ort_model, tokenizer=tokenizer, device="cuda:0")
result = pipeline("Both the music and visual were astounding, not to mention the actors performance.")
```

## Combine optimizations

It is often possible to combine several of the optimization techniques described above to get the best inference performance possible for your model. For example, you can load a model in 4-bit, and then enable BetterTransformer with FlashAttention:
367
368
369
370
371

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

372
# load model in 4-bit
373
374
375
376
377
378
379
380
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config)

381
382
383
# enable BetterTransformer
model = model.to_bettertransformer()

384
385
386
input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

387
# enable FlashAttention
388
389
390
391
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
392
```