configuration_bertabs.py 4.17 KB
Newer Older
R茅mi Louf's avatar
R茅mi Louf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding=utf-8
# Copyright 2019 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BertAbs configuration """
import json
import logging
import sys

from transformers import PretrainedConfig


logger = logging.getLogger(__name__)


BERTABS_FINETUNED_CONFIG_MAP = {
    "bertabs-finetuned-cnndm": "https://s3.amazonaws.com/models.huggingface.co/bert/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization-config.json",
}


class BertAbsConfig(PretrainedConfig):
    r""" Class to store the configuration of the BertAbs model.

    Arguments:
        max_pos: int
            The maximum sequence length that this model will be used with.
        enc_layer: int
            The numner of hidden layers in the Transformer encoder.
        enc_hidden_size: int
            The size of the encoder's layers.
        enc_heads: int
            The number of attention heads for each attention layer in the encoder.
        enc_ff_size: int
            The size of the encoder's feed-forward layers.
        enc_dropout: int
            The dropout probabilitiy for all fully connected layers in the
            embeddings, layers, pooler and also the attention probabilities in
            the encoder.
        dec_layer: int
            The numner of hidden layers in the decoder.
        dec_hidden_size: int
            The size of the decoder's layers.
        dec_heads: int
            The number of attention heads for each attention layer in the decoder.
        dec_ff_size: int
            The size of the decoder's feed-forward layers.
        dec_dropout: int
            The dropout probabilitiy for all fully connected layers in the
            embeddings, layers, pooler and also the attention probabilities in
            the decoder.
    """

    pretrained_config_archive_map = BERTABS_FINETUNED_CONFIG_MAP

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
68
        vocab_size=30522,
R茅mi Louf's avatar
R茅mi Louf committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        max_pos=512,
        enc_layers=6,
        enc_hidden_size=512,
        enc_heads=8,
        enc_ff_size=512,
        enc_dropout=0.2,
        dec_layers=6,
        dec_hidden_size=768,
        dec_heads=8,
        dec_ff_size=2048,
        dec_dropout=0.2,
        **kwargs,
    ):
        super(BertAbsConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
84
85
        if self._input_is_path_to_json(vocab_size):
            path_to_json = vocab_size
R茅mi Louf's avatar
R茅mi Louf committed
86
87
88
89
            with open(path_to_json, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
thomwolf's avatar
thomwolf committed
90
91
        elif isinstance(vocab_size, int):
            self.vocab_size = vocab_size
R茅mi Louf's avatar
R茅mi Louf committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
            self.max_pos = max_pos

            self.enc_layers = enc_layers
            self.enc_hidden_size = enc_hidden_size
            self.enc_heads = enc_heads
            self.enc_ff_size = enc_ff_size
            self.enc_dropout = enc_dropout

            self.dec_layers = dec_layers
            self.dec_hidden_size = dec_hidden_size
            self.dec_heads = dec_heads
            self.dec_ff_size = dec_ff_size
            self.dec_dropout = dec_dropout
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

    def _input_is_path_to_json(self, first_argument):
        """ Checks whether the first argument passed to config
        is the path to a JSON file that contains the config.
        """
        is_python_2 = sys.version_info[0] == 2
        if is_python_2:
            return isinstance(first_argument, unicode)
        else:
            return isinstance(first_argument, str)