transformer_base.py 11.2 KB
Newer Older
1
import argparse
2
import logging
3
4
5
6
7
8
9
10
import os
import random

import numpy as np
import pytorch_lightning as pl
import torch

from transformers import (
11
    ALL_PRETRAINED_MODEL_ARCHIVE_MAP,
12
    AdamW,
13
14
15
16
17
18
19
20
    AutoConfig,
    AutoModel,
    AutoModelForPreTraining,
    AutoModelForQuestionAnswering,
    AutoModelForSequenceClassification,
    AutoModelForTokenClassification,
    AutoModelWithLMHead,
    AutoTokenizer,
21
22
    get_linear_schedule_with_warmup,
)
23
from transformers.modeling_auto import MODEL_MAPPING
24
25


26
27
28
logger = logging.getLogger(__name__)


29
30
ALL_MODELS = tuple(ALL_PRETRAINED_MODEL_ARCHIVE_MAP)
MODEL_CLASSES = tuple(m.model_type for m in MODEL_MAPPING)
31

32
33
34
35
36
37
38
MODEL_MODES = {
    "base": AutoModel,
    "sequence-classification": AutoModelForSequenceClassification,
    "question-answering": AutoModelForQuestionAnswering,
    "pretraining": AutoModelForPreTraining,
    "token-classification": AutoModelForTokenClassification,
    "language-modeling": AutoModelWithLMHead,
39
40
41
}


42
def set_seed(args: argparse.Namespace):
43
44
45
46
47
48
49
50
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


class BaseTransformer(pl.LightningModule):
51
    def __init__(self, hparams: argparse.Namespace, num_labels=None, mode="base", **config_kwargs):
52
53
54
55
        "Initialize a model."

        super(BaseTransformer, self).__init__()
        self.hparams = hparams
56
        cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None
57
        self.hparams.model_type = self.hparams.model_type.lower()
58
        config = AutoConfig.from_pretrained(
59
            self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,
60
            **({"num_labels": num_labels} if num_labels is not None else {}),
61
62
            cache_dir=cache_dir,
            **config_kwargs,
63
        )
64
        tokenizer = AutoTokenizer.from_pretrained(
65
66
            self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,
            do_lower_case=self.hparams.do_lower_case,
67
            cache_dir=cache_dir,
68
        )
69
        model = MODEL_MODES[mode].from_pretrained(
70
71
72
            self.hparams.model_name_or_path,
            from_tf=bool(".ckpt" in self.hparams.model_name_or_path),
            config=config,
73
            cache_dir=cache_dir,
74
75
76
77
        )
        self.config, self.tokenizer, self.model = config, tokenizer, model

    def is_logger(self):
78
        return self.trainer.proc_rank <= 0
79
80
81
82

    def configure_optimizers(self):
        "Prepare optimizer and schedule (linear warmup and decay)"

83
        model = self.model
84
85
86
87
88
89
90
91
92
93
94
95
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.hparams.weight_decay,
            },
            {
                "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
96
        self.opt = optimizer
97
98
99
        return [optimizer]

    def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None):
100
101
102
103
        if self.trainer.use_tpu:
            xm.optimizer_step(optimizer)
        else:
            optimizer.step()
104
        optimizer.zero_grad()
105
        self.lr_scheduler.step()
106
107

    def get_tqdm_dict(self):
108
109
        avg_loss = getattr(self.trainer, "avg_loss", 0.0)
        tqdm_dict = {"loss": "{:.3f}".format(avg_loss), "lr": self.lr_scheduler.get_last_lr()[-1]}
110
111
112
113
114
115
116
117
118
        return tqdm_dict

    def test_step(self, batch, batch_nb):
        return self.validation_step(batch, batch_nb)

    def test_end(self, outputs):
        return self.validation_end(outputs)

    def train_dataloader(self):
119
120
121
122
123
124
125
126
127
128
129
130
131
        train_batch_size = self.hparams.train_batch_size
        dataloader = self.load_dataset("train", train_batch_size)

        t_total = (
            (len(dataloader.dataset) // (train_batch_size * max(1, self.hparams.n_gpu)))
            // self.hparams.gradient_accumulation_steps
            * float(self.hparams.num_train_epochs)
        )
        scheduler = get_linear_schedule_with_warmup(
            self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=t_total
        )
        self.lr_scheduler = scheduler
        return dataloader
132
133
134
135
136
137
138

    def val_dataloader(self):
        return self.load_dataset("dev", self.hparams.eval_batch_size)

    def test_dataloader(self):
        return self.load_dataset("test", self.hparams.eval_batch_size)

139
140
141
142
143
144
145
146
147
148
    def _feature_file(self, mode):
        return os.path.join(
            self.hparams.data_dir,
            "cached_{}_{}_{}".format(
                mode,
                list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(),
                str(self.hparams.max_seq_length),
            ),
        )

149
150
151
152
153
154
155
    @staticmethod
    def add_model_specific_args(parser, root_dir):
        parser.add_argument(
            "--model_type",
            default=None,
            type=str,
            required=True,
156
            help="Model type selected in the list: " + ", ".join(MODEL_CLASSES),
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        )
        parser.add_argument(
            "--model_name_or_path",
            default=None,
            type=str,
            required=True,
            help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
        )
        parser.add_argument(
            "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
        )
        parser.add_argument(
            "--tokenizer_name",
            default="",
            type=str,
            help="Pretrained tokenizer name or path if not the same as model_name",
        )
        parser.add_argument(
            "--cache_dir",
            default="",
            type=str,
            help="Where do you want to store the pre-trained models downloaded from s3",
        )
        parser.add_argument(
            "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
        )
        parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
        parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
        parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
        parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
        parser.add_argument(
            "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform."
        )

        parser.add_argument("--train_batch_size", default=32, type=int)
        parser.add_argument("--eval_batch_size", default=32, type=int)


195
class LoggingCallback(pl.Callback):
196
    def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
197
198
199
200
201
202
203
204
        logger.info("***** Validation results *****")
        if pl_module.is_logger():
            metrics = trainer.callback_metrics
            # Log results
            for key in sorted(metrics):
                if key not in ["log", "progress_bar"]:
                    logger.info("{} = {}\n".format(key, str(metrics[key])))

205
    def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        logger.info("***** Test results *****")

        if pl_module.is_logger():
            metrics = trainer.callback_metrics

            # Log and save results to file
            output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt")
            with open(output_test_results_file, "w") as writer:
                for key in sorted(metrics):
                    if key not in ["log", "progress_bar"]:
                        logger.info("{} = {}\n".format(key, str(metrics[key])))
                        writer.write("{} = {}\n".format(key, str(metrics[key])))


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def add_generic_args(parser, root_dir):
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )

    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )

    parser.add_argument("--n_gpu", type=int, default=1)
244
    parser.add_argument("--n_tpu_cores", type=int, default=0)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )

    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")


260
def generic_train(model: BaseTransformer, args: argparse.Namespace):
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    # init model
    set_seed(args)

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd

        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    checkpoint_callback = pl.callbacks.ModelCheckpoint(
        filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=5
    )

srush's avatar
srush committed
280
    train_params = dict(
281
282
283
        accumulate_grad_batches=args.gradient_accumulation_steps,
        gpus=args.n_gpu,
        max_epochs=args.num_train_epochs,
284
        early_stop_callback=False,
285
286
        gradient_clip_val=args.max_grad_norm,
        checkpoint_callback=checkpoint_callback,
287
        callbacks=[LoggingCallback()],
288
    )
289

srush's avatar
srush committed
290
291
292
293
    if args.fp16:
        train_params["use_amp"] = args.fp16
        train_params["amp_level"] = args.fp16_opt_level

294
295
296
297
298
299
300
    if args.n_tpu_cores > 0:
        global xm
        import torch_xla.core.xla_model as xm

        train_params["num_tpu_cores"] = args.n_tpu_cores
        train_params["gpus"] = 0

srush's avatar
srush committed
301
302
303
304
305
    if args.n_gpu > 1:
        train_params["distributed_backend"] = "ddp"

    trainer = pl.Trainer(**train_params)

306
307
308
309
    if args.do_train:
        trainer.fit(model)

    return trainer