modeling_xlm.py 46.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import math
import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

from .file_utils import cached_path
thomwolf's avatar
thomwolf committed
38
39
from .model_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
                          prune_linear_layer, SequenceSummary, SQuADHead)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
}


class XLMConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `XLMModel`.
    """
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
thomwolf's avatar
thomwolf committed
57
                 vocab_size_or_config_json_file=30145,
thomwolf's avatar
xlm  
thomwolf committed
58
59
60
61
62
63
64
65
                 n_special=0,
                 emb_dim=2048,
                 n_layers=12,
                 n_heads=16,
                 dropout=0.1,
                 attention_dropout=0.1,
                 gelu_activation=True,
                 sinusoidal_embeddings=False,
thomwolf's avatar
thomwolf committed
66
                 causal=False,
thomwolf's avatar
xlm  
thomwolf committed
67
68
                 asm=False,
                 n_langs=1,
69
                 max_position_embeddings=512,
thomwolf's avatar
thomwolf committed
70
                 embed_init_std=2048 ** -0.5,
thomwolf's avatar
thomwolf committed
71
                 layer_norm_eps=1e-12,
thomwolf's avatar
thomwolf committed
72
73
74
75
76
77
78
                 init_std=0.02,
                 bos_index=0,
                 eos_index=1,
                 pad_index=2,
                 unk_index=3,
                 mask_index=5,
                 is_encoder=True,
thomwolf's avatar
thomwolf committed
79
80
81
82
83
84
85
86
87

                 finetuning_task=None,
                 num_labels=2,
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
                 summary_dropout=0.1,
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
xlm  
thomwolf committed
88
                 **kwargs):
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        """Constructs XLMConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
            attn_type: 'bi' for XLM, 'uni' for Transformer-XL

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
        """
thomwolf's avatar
xlm  
thomwolf committed
131
132
        super(XLMConfig, self).__init__(**kwargs)

133
134
135
136
137
138
139
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
xlm  
thomwolf committed
140
141
142
143
144
145
146
147
148
            self.n_words = vocab_size_or_config_json_file
            self.n_special = n_special
            self.emb_dim = emb_dim
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
thomwolf's avatar
thomwolf committed
149
            self.causal = causal
thomwolf's avatar
xlm  
thomwolf committed
150
151
            self.asm = asm
            self.n_langs = n_langs
thomwolf's avatar
thomwolf committed
152
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
153
154
155
156
157
158
            self.bos_index = bos_index
            self.eos_index = eos_index
            self.pad_index = pad_index
            self.unk_index = unk_index
            self.mask_index = mask_index
            self.is_encoder = is_encoder
159
            self.max_position_embeddings = max_position_embeddings
thomwolf's avatar
thomwolf committed
160
161
            self.embed_init_std = embed_init_std
            self.init_std = init_std
thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
169
            self.finetuning_task = finetuning_task
            self.num_labels = num_labels
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
            self.summary_dropout = summary_dropout
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
170
171
172
173
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
xlm  
thomwolf committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    @property
    def total_tokens_embeddings(self):
        return self.n_words + self.n_special

    @property
    def hidden_size(self):
        return self.emb_dim

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
thomwolf's avatar
thomwolf committed
207
    https://github.com/huggingface/pytorch-transformers/blob/master/modeling.py
208
209
210
211
212
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


thomwolf's avatar
thomwolf committed
213
def get_masks(slen, lengths, causal, padding_mask=None):
214
215
216
217
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = lengths.size(0)
thomwolf's avatar
thomwolf committed
218
219
220
221
222
223
    if padding_mask is not None:
        mask = padding_mask
    else:
        assert lengths.max().item() <= slen
        alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
        mask = alen < lengths[:, None]
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

thomwolf's avatar
thomwolf committed
242
    def __init__(self, n_heads, dim, config):
thomwolf's avatar
thomwolf committed
243
        super(MultiHeadAttention, self).__init__()
244
        self.layer_id = next(MultiHeadAttention.NEW_ID)
thomwolf's avatar
thomwolf committed
245
        self.output_attentions = config.output_attentions
246
247
        self.dim = dim
        self.n_heads = n_heads
thomwolf's avatar
thomwolf committed
248
        self.dropout = config.attention_dropout
249
250
        assert self.dim % self.n_heads == 0

thomwolf's avatar
thomwolf committed
251
252
253
254
        self.q_lin = nn.Linear(dim, dim)
        self.k_lin = nn.Linear(dim, dim)
        self.v_lin = nn.Linear(dim, dim)
        self.out_lin = nn.Linear(dim, dim)
255

thomwolf's avatar
thomwolf committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads

thomwolf's avatar
thomwolf committed
274
    def forward(self, input, mask, kv=None, cache=None, head_mask=None):
275
276
277
278
279
280
281
282
283
284
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
thomwolf's avatar
thomwolf committed
285
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
286
        n_heads = self.n_heads
thomwolf's avatar
thomwolf committed
287
        dim_per_head = self.dim // n_heads
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
thomwolf's avatar
thomwolf committed
324
325
326
327
328

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

329
330
331
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

thomwolf's avatar
xlm  
thomwolf committed
332
333
        outputs = (self.out_lin(context),)
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
334
            outputs = outputs + (weights,)
thomwolf's avatar
xlm  
thomwolf committed
335
        return outputs
336
337
338
339


class TransformerFFN(nn.Module):

thomwolf's avatar
thomwolf committed
340
    def __init__(self, in_dim, dim_hidden, out_dim, config):
thomwolf's avatar
thomwolf committed
341
        super(TransformerFFN, self).__init__()
thomwolf's avatar
thomwolf committed
342
        self.dropout = config.dropout
thomwolf's avatar
thomwolf committed
343
344
        self.lin1 = nn.Linear(in_dim, dim_hidden)
        self.lin2 = nn.Linear(dim_hidden, out_dim)
thomwolf's avatar
thomwolf committed
345
        self.act = gelu if config.gelu_activation else F.relu
346
347
348
349
350
351
352
353
354

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


355
class XLMPreTrainedModel(PreTrainedModel):
356
357
358
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
359
360
361
    config_class = XLMConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
362
    base_model_prefix = "transformer"
363
364
365

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
366
367

    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
368
369
370
371
372
373
374
375
376
        """ Initialize the weights. """
        if isinstance(module, nn.Embedding):
            if self.config is not None and self.config.embed_init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
        if isinstance(module, nn.Linear):
            if self.config is not None and self.config.init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
                if hasattr(module, 'bias') and module.bias is not None:
                    nn.init.constant_(module.bias, 0.)
thomwolf's avatar
thomwolf committed
377
        if isinstance(module, nn.LayerNorm):
378
379
380
381
382
383
384
385
386
387
388
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class XLMModel(XLMPreTrainedModel):

    ATTRIBUTES = ['encoder', 'eos_index', 'pad_index',  # 'with_output', 
                  'n_langs', 'n_words', 'dim', 'n_layers', 'n_heads', 
                  'hidden_dim', 'dropout', 'attention_dropout', 'asm',
                  'asm_cutoffs', 'asm_div_value']

thomwolf's avatar
xlm  
thomwolf committed
389
    def __init__(self, config):  #, dico, is_encoder, with_output):
thomwolf's avatar
thomwolf committed
390
391
392
        """ XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
            Paper: https://arxiv.org/abs/1901.07291
            Original code: https://github.com/facebookresearch/XLM
thomwolf's avatar
thomwolf committed
393
394

        Params:
thomwolf's avatar
thomwolf committed
395
            `config`: a XLMConfig class instance with the configuration to build a new model
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
403
404
405
            `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
            `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
                This can be used to compute head importance metrics. Default: False

        Inputs:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
thomwolf's avatar
thomwolf committed
406
                a `sentence B` token (see XLM paper for more details).
thomwolf's avatar
thomwolf committed
407
408
409
410
411
412
413
414
415
416
417
418
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Outputs: Tuple of (encoded_layers, pooled_output)
            `encoded_layers`: controled by `output_all_encoded_layers` argument:
                - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
thomwolf's avatar
thomwolf committed
419
                    of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
thomwolf's avatar
thomwolf committed
420
421
422
423
424
                    encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
                - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                    to the last attention block of shape [batch_size, sequence_length, hidden_size],
            `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
                classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
425
                input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
thomwolf's avatar
thomwolf committed
426
427
428
429
430
431
432
433

        Example usage:
        ```python
        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
434
        config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
thomwolf's avatar
thomwolf committed
435
436
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

thomwolf's avatar
thomwolf committed
437
        model = modeling.XLMModel(config=config)
thomwolf's avatar
thomwolf committed
438
439
        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
        ```
440
        """
thomwolf's avatar
xlm  
thomwolf committed
441
442
443
        super(XLMModel, self).__init__(config)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
444
445

        # encoder / decoder, output layer
thomwolf's avatar
thomwolf committed
446
447
448
449
        self.is_encoder = config.is_encoder
        self.is_decoder = not config.is_encoder
        if self.is_decoder:
            raise NotImplementedError("Currently XLM can only be used as an encoder")
450
        # self.with_output = with_output
thomwolf's avatar
xlm  
thomwolf committed
451
        self.causal = config.causal
452
453

        # dictionary / languages
thomwolf's avatar
xlm  
thomwolf committed
454
455
456
457
        self.n_langs = config.n_langs
        self.n_words = config.n_words
        self.eos_index = config.eos_index
        self.pad_index = config.pad_index
458
        # self.dico = dico
thomwolf's avatar
thomwolf committed
459
460
        # self.id2lang = config.id2lang
        # self.lang2id = config.lang2id
461
        # assert len(self.dico) == self.n_words
thomwolf's avatar
thomwolf committed
462
        # assert len(self.id2lang) == len(self.lang2id) == self.n_langs
463
464

        # model parameters
thomwolf's avatar
xlm  
thomwolf committed
465
        self.dim = config.emb_dim       # 512 by default
466
        self.hidden_dim = self.dim * 4  # 2048 by default
thomwolf's avatar
xlm  
thomwolf committed
467
468
469
470
        self.n_heads = config.n_heads   # 8 by default
        self.n_layers = config.n_layers
        self.dropout = config.dropout
        self.attention_dropout = config.attention_dropout
471
472
473
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
thomwolf's avatar
thomwolf committed
474
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
thomwolf's avatar
xlm  
thomwolf committed
475
476
477
        if config.sinusoidal_embeddings:
            create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
        if config.n_langs > 1:
thomwolf's avatar
thomwolf committed
478
479
480
            self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
        self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
481
482
483
484
485
486

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
thomwolf's avatar
thomwolf committed
487
488
489
        # if self.is_decoder:
        #     self.layer_norm15 = nn.ModuleList()
        #     self.encoder_attn = nn.ModuleList()
490
491

        for _ in range(self.n_layers):
thomwolf's avatar
thomwolf committed
492
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
thomwolf's avatar
thomwolf committed
493
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
494
            # if self.is_decoder:
thomwolf's avatar
thomwolf committed
495
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
496
497
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
thomwolf's avatar
thomwolf committed
498
499
500
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))

        self.apply(self.init_weights)
501

thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.attentions[layer].prune_heads(heads)

thomwolf's avatar
thomwolf committed
510
511
    def forward(self, input_ids, lengths=None, positions=None, langs=None,
                token_type_ids=None, attention_mask=None, cache=None, head_mask=None):  # src_enc=None, src_len=None, 
512
513
        """
        Inputs:
thomwolf's avatar
xlm  
thomwolf committed
514
            `input_ids` LongTensor(bs, slen), containing word indices
515
            `lengths` LongTensor(bs), containing the length of each sentence
thomwolf's avatar
thomwolf committed
516
517
            `positions` LongTensor(bs, slen), containing word positions
            `langs` LongTensor(bs, slen), containing language IDs
thomwolf's avatar
thomwolf committed
518
            `token_type_ids` LongTensor (bs, slen) same as `langs` used for compatibility
519
        """
thomwolf's avatar
thomwolf committed
520
        if lengths is None:
thomwolf's avatar
thomwolf committed
521
            lengths = (input_ids != self.pad_index).sum(dim=1).long()
thomwolf's avatar
xlm  
thomwolf committed
522
        # mask = input_ids != self.pad_index
523
524

        # check inputs
thomwolf's avatar
xlm  
thomwolf committed
525
        bs, slen = input_ids.size()
526
527
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
thomwolf's avatar
xlm  
thomwolf committed
528
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
thomwolf's avatar
thomwolf committed
529
530
531
532
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs
533
534

        # generate masks
thomwolf's avatar
thomwolf committed
535
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
thomwolf's avatar
thomwolf committed
536
537
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
538
539
540

        # positions
        if positions is None:
thomwolf's avatar
thomwolf committed
541
            positions = input_ids.new((slen,)).long()
542
543
            positions = torch.arange(slen, out=positions).unsqueeze(0)
        else:
thomwolf's avatar
thomwolf committed
544
545
            assert positions.size() == (bs, slen)  # (slen, bs)
            # positions = positions.transpose(0, 1)
546
547

        # langs
thomwolf's avatar
thomwolf committed
548
549
550
        assert langs is None or token_type_ids is None, "You can only use one among langs and token_type_ids"
        if token_type_ids is not None:
            langs = token_type_ids
551
        if langs is not None:
thomwolf's avatar
thomwolf committed
552
553
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)
554

thomwolf's avatar
thomwolf committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layers

570
571
572
        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
thomwolf's avatar
xlm  
thomwolf committed
573
            input_ids = input_ids[:, -_slen:]
574
575
576
577
578
579
580
            positions = positions[:, -_slen:]
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
thomwolf's avatar
xlm  
thomwolf committed
581
        tensor = self.embeddings(input_ids)
582
583
584
585
586
587
588
589
        tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
        if langs is not None:
            tensor = tensor + self.lang_embeddings(langs)
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
thomwolf's avatar
thomwolf committed
590
591
        hidden_states = ()
        attentions = ()
592
        for i in range(self.n_layers):
thomwolf's avatar
thomwolf committed
593
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
594
                hidden_states = hidden_states + (tensor,)
595
596

            # self attention
thomwolf's avatar
thomwolf committed
597
598
599
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
600
                attentions = attentions + (attn_outputs[1],)
601
602
603
604
605
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
thomwolf's avatar
thomwolf committed
606
607
608
609
610
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)
611
612
613
614
615
616

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

thomwolf's avatar
thomwolf committed
617
618
        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
619
            hidden_states = hidden_states + (tensor,)
thomwolf's avatar
thomwolf committed
620

621
622
623
624
625
        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
thomwolf's avatar
thomwolf committed
626
        # tensor = tensor.transpose(0, 1)
627

thomwolf's avatar
thomwolf committed
628
        outputs = (tensor,)
629
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
630
            outputs = outputs + (hidden_states,)
thomwolf's avatar
thomwolf committed
631
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
632
            outputs = outputs + (attentions,)
thomwolf's avatar
thomwolf committed
633
        return outputs  # outputs, (hidden_states), (attentions)
634
635
636
637
638
639


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
thomwolf's avatar
xlm  
thomwolf committed
640
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
641
        super(XLMPredLayer, self).__init__()
thomwolf's avatar
xlm  
thomwolf committed
642
643
644
645
        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        dim = config.emb_dim
646

thomwolf's avatar
xlm  
thomwolf committed
647
        if config.asm is False:
thomwolf's avatar
thomwolf committed
648
            self.proj = nn.Linear(dim, config.n_words, bias=True)
649
650
651
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
thomwolf's avatar
xlm  
thomwolf committed
652
653
654
                n_classes=config.n_words,
                cutoffs=config.asm_cutoffs,
                div_value=config.asm_div_value,
655
656
657
                head_bias=True,  # default is False
            )

thomwolf's avatar
thomwolf committed
658
659
    def forward(self, x, y=None):
        """ Compute the loss, and optionally the scores.
660
        """
thomwolf's avatar
thomwolf committed
661
        outputs = ()
662
663
        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
thomwolf's avatar
thomwolf committed
664
665
666
667
            outputs = (scores,) + outputs
            if y is not None:
                loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
                outputs = (loss,) + outputs
668
        else:
thomwolf's avatar
thomwolf committed
669
670
671
672
673
            scores = self.proj.log_prob(x)
            outputs = (scores,) + outputs
            if y is not None:
                _, loss = self.proj(x, y)
                outputs = (loss,) + outputs
674

thomwolf's avatar
thomwolf committed
675
        return outputs
676

thomwolf's avatar
thomwolf committed
677
678

class XLMWithLMHeadModel(XLMPreTrainedModel):
thomwolf's avatar
xlm  
thomwolf committed
679
680
681
    """ XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
        Paper: https://arxiv.org/abs/1901.07291
        Original code: https://github.com/facebookresearch/XLM
thomwolf's avatar
thomwolf committed
682

thomwolf's avatar
xlm  
thomwolf committed
683
684
685
686
687
    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
688

thomwolf's avatar
xlm  
thomwolf committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLM paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
703
704


thomwolf's avatar
xlm  
thomwolf committed
705
706
707
708
709
710
711
712
713
714
    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
thomwolf's avatar
thomwolf committed
715

thomwolf's avatar
xlm  
thomwolf committed
716
717
718
719
720
721
    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
722

thomwolf's avatar
xlm  
thomwolf committed
723
724
    config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
725

thomwolf's avatar
xlm  
thomwolf committed
726
727
728
729
730
    model = modeling.XLMModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
731
        super(XLMWithLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
732
        self.torchscript = config.torchscript
733

thomwolf's avatar
xlm  
thomwolf committed
734
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
735
        self.pred_layer = XLMPredLayer(config)
736
737
738
739
740
741
742

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
743
744
745
746
        if self.torchscript:
            self.pred_layer.proj.weight = nn.Parameter(self.transformer.embeddings.weight.clone())
        else:
            self.pred_layer.proj.weight = self.transformer.embeddings.weight
747

thomwolf's avatar
thomwolf committed
748
749
    def forward(self, input_ids, lengths=None, positions=None, langs=None, token_type_ids=None,
                attention_mask=None, cache=None, labels=None, head_mask=None):
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
thomwolf's avatar
thomwolf committed
776
777
        transformer_outputs = self.transformer(input_ids, lengths=lengths, positions=positions, token_type_ids=token_type_ids,
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
778

779
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
780
781
        outputs = self.pred_layer(output, labels)
        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
782

783
        return outputs
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803


class XLMForSequenceClassification(XLMPreTrainedModel):
    """XLM model ("XLM: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
            0 for real tokens and 1 for padding.
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
804
            Added for easy compatibility with the XLM model (which uses this negative masking).
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
            You can only uses one among `input_mask` and `attention_mask`
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
            if labels is None:
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLMModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
xlm  
thomwolf committed
850
    def __init__(self, config):
851
        super(XLMForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
852
        self.num_labels = config.num_labels
853

thomwolf's avatar
xlm  
thomwolf committed
854
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
855
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
856

857
858
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
859
860
    def forward(self, input_ids, lengths=None, positions=None, langs=None, token_type_ids=None,
                attention_mask=None, cache=None, labels=None, head_mask=None):
861
862
863
864
865
866
867
868
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
869
                Added for easy compatibility with the XLM model (which uses this negative masking).
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
                You can only uses one among `input_mask` and `attention_mask`
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
thomwolf's avatar
thomwolf committed
888
889
        transformer_outputs = self.transformer(input_ids, lengths=lengths, positions=positions, token_type_ids=token_type_ids,
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
890

891
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
892
        logits = self.sequence_summary(output)
893

thomwolf's avatar
thomwolf committed
894
        outputs = (logits,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
895

896
897
898
899
900
901
902
903
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
904
            outputs = (loss,) + outputs
905

906
        return outputs
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928


class XLMForQuestionAnswering(XLMPreTrainedModel):
    """XLM model for Question Answering (span extraction).
    This module is composed of the XLM model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLM paper for more details).
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
929
            Added for easy compatibility with the XLM model (which uses this negative masking).
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLMForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
965
    def __init__(self, config):
966
        super(XLMForQuestionAnswering, self).__init__(config)
967

thomwolf's avatar
xlm  
thomwolf committed
968
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
969
        self.qa_outputs = SQuADHead(config)
thomwolf's avatar
xlm  
thomwolf committed
970

971
972
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
973
974
975
    def forward(self, input_ids, lengths=None, positions=None, langs=None, token_type_ids=None,
                attention_mask=None, cache=None, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None, head_mask=None):
976

thomwolf's avatar
thomwolf committed
977
978
        transformer_outputs = self.transformer(input_ids, lengths=lengths, positions=positions, token_type_ids=token_type_ids,
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
979

980
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
981
982
983
984
985

        outputs = self.qa_outputs(output, start_positions=start_positions, end_positions=end_positions,
                                  cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask)

        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
986
987

        return outputs