run_xtreme_s.py 37.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

""" Fine-tuning a 🤗 Transformers pretrained speech model on the XTREME-S benchmark tasks"""

import json
import logging
import os
import re
import sys
23
from collections import OrderedDict, defaultdict
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union

import datasets
import numpy as np
import torch
from datasets import DatasetDict, load_dataset, load_metric

import transformers
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    AutoModelForCTC,
    AutoModelForSpeechSeq2Seq,
    AutoProcessor,
    AutoTokenizer,
    HfArgumentParser,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    Trainer,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.18.0.dev0")

require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")


logger = logging.getLogger(__name__)


def list_field(default=None, metadata=None):
    return field(default_factory=lambda: default, metadata=metadata)


65
66
67
68
69
70
71
72
73
74
75
TASK_TO_TARGET_COLUMN_NAME = {
    "fleurs-asr": "transcription",
    "fleurs-lang_id": "lang_id",
    "mls": "transcription",
    "voxpopuli": "transcription",
    "covost2": "translation",
    "minds14": "intent_class",
    "babel": "transcription",
}


76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    tokenizer_name_or_path: Optional[str] = field(
        default=None,
        metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={
            "help": "Where do you want to store the pretrained models and datasets downloaded from " "huggingface.co"
        },
    )
    freeze_feature_encoder: bool = field(
        default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
    )
    attention_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
    )
    feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
    hidden_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    final_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout probability for the final projection layer."},
    )
    mask_time_prob: float = field(
        default=0.05,
        metadata={
            "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
            "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
            "vectors will be masked along the time axis."
        },
    )
    mask_time_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the time axis."},
    )
    mask_feature_prob: float = field(
        default=0.0,
        metadata={
            "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
            "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
        },
    )
    mask_feature_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the feature axis."},
    )
    layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
139
140
141
142
    ctc_zero_infinity: bool = field(
        default=False,
        metadata={"help": "Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`."},
    )
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    ctc_loss_reduction: Optional[str] = field(
        default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    dataset_name: str = field(
159
160
        default="google/xtreme_s",
        metadata={"help": "The name of the dataset to use (via the datasets library). Defaults to 'google/xtreme_s'"},
161
    )
162
163
164
165
166
167
168
169
170
171
    task: str = field(
        default=None,
        metadata={
            "help": "The task name of the benchmark to use (via the datasets library). Should be on of: "
            "'fleurs-asr', 'mls', 'voxpopuli', 'covost2', 'minds14', 'fleurs-lang_id', 'babel'."
        },
    )
    language: str = field(
        default="all",
        metadata={"help": "The language id as defined in the datasets config name or `all` for all languages."},
172
    )
173
174
175
176
177
178
179
180
181
    language_group: str = field(
        default=None,
        metadata={
            "help": "The language group to select a subset of languages to train on. "
            "This option is only used the 'fleurs-asr' task. Should be one of: "
            "'western_european_we', 'eastern_european_ee', 'central_asia_middle_north_african_cmn', "
            "'sub_saharan_african_ssa', 'south_asian_sa', 'south_east_asian_sea', 'chinese_japanase_korean_cjk'."
        },
    )
182
183
184
    train_split_name: str = field(
        default="train",
        metadata={
185
            "help": "The name of the training dataset split to use (via the datasets library). Defaults to 'train'"
186
187
188
189
190
        },
    )
    eval_split_name: str = field(
        default="validation",
        metadata={
191
            "help": "The name of the evaluation dataset split to use (via the datasets library). "
192
193
194
            "Defaults to 'validation'"
        },
    )
195
196
197
    predict_split_name: str = field(
        default="test",
        metadata={
198
            "help": "The name of the prediction dataset split to use (via the datasets library). " "Defaults to 'test'"
199
200
        },
    )
201
202
203
204
205
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
    target_column_name: str = field(
206
        default=None,
207
208
        metadata={
            "help": "The name of the dataset column containing the target data "
209
            "(transcription/translation/label). If None, the name will be inferred from the task. Defaults to None."
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
233
234
235
236
237
238
239
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
            "value if set."
        },
    )
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    chars_to_ignore: Optional[List[str]] = list_field(
        default=', ? . ! - ; : " “ % ‘ ” �'.split(" "),
        metadata={"help": "A list of characters to remove from the transcripts."},
    )
    max_duration_in_seconds: float = field(
        default=30.0,
        metadata={
            "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
        },
    )
    min_duration_in_seconds: float = field(
        default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": "Whether to only do data preprocessing and skip training. "
            "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
            "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
            "so that the cached datasets can consequently be loaded in distributed training"
        },
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "If :obj:`True`, will use the token generated when running"
            ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
        },
    )
    unk_token: str = field(
        default="[UNK]",
        metadata={"help": "The unk token for the tokenizer"},
    )
    pad_token: str = field(
        default="[PAD]",
        metadata={"help": "The padding token for the tokenizer"},
    )
    word_delimiter_token: str = field(
        default="|",
        metadata={"help": "The word delimiter token for the tokenizer"},
    )
    phoneme_language: Optional[str] = field(
        default=None,
        metadata={
            "help": "The target language that should be used be"
            " passed to the tokenizer for tokenization. Note that"
            " this is only relevant if the model classifies the"
            " input audio to a sequence of phoneme sequences."
        },
    )
290
291
292
293
294
295
296
    per_lang_metrics: bool = field(
        default=True,
        metadata={
            "help": "If `True`, compute the test metrics separately for each language, and average the results. "
            "If `False` compute the average test metrics in a single pass for all languages at once."
        },
    )
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369


@dataclass
class SpeechDataCollatorWithPadding:

    processor: AutoProcessor
    decoder_start_token_id: Optional[int] = None
    padding: Union[bool, str] = "longest"
    pad_labels: Optional[int] = True
    pad_to_multiple_of: Optional[int] = None
    pad_to_multiple_of_labels: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lenghts and need
        # different padding methods
        input_features = [{"input_values": feature["input_values"]} for feature in features]

        batch = self.processor.pad(
            input_features,
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors="pt",
        )

        if self.pad_labels:
            label_features = [{"input_ids": feature["labels"]} for feature in features]
            with self.processor.as_target_processor():
                labels_batch = self.processor.pad(
                    label_features,
                    padding=self.padding,
                    pad_to_multiple_of=self.pad_to_multiple_of_labels,
                    return_tensors="pt",
                )

            # replace padding with -100 to ignore loss correctly
            labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

            # if bos token is appended in previous tokenization step,
            # cut bos token here as it's append later anyways
            if (
                self.decoder_start_token_id is not None
                and (labels[:, 0] == self.decoder_start_token_id).all().cpu().item()
            ):
                labels = labels[:, 1:]

            batch["labels"] = labels
        else:
            batch["labels"] = torch.tensor([feature["labels"] for feature in features])

        return batch


def create_vocabulary_from_data(
    datasets: DatasetDict,
    word_delimiter_token: Optional[str] = None,
    unk_token: Optional[str] = None,
    pad_token: Optional[str] = None,
):
    # Given training and test labels create vocabulary
    def extract_all_chars(batch):
        all_text = " ".join(batch["target_text"])
        vocab = list(set(all_text))
        return {"vocab": [vocab], "all_text": [all_text]}

    vocabs = datasets.map(
        extract_all_chars,
        batched=True,
        batch_size=-1,
        keep_in_memory=True,
        remove_columns=datasets["train"].column_names,
    )

    # take union of all unique characters in each dataset
370
371
372
373
    vocab_set = (
        (set(vocabs["train"]["vocab"][0]) if "train" in vocabs else set())
        | (set(vocabs["eval"]["vocab"][0]) if "eval" in vocabs else set())
        | (set(vocabs["predict"]["vocab"][0]) if "predict" in vocabs else set())
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    )

    vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}

    # replace white space with delimiter token
    if word_delimiter_token is not None:
        vocab_dict[word_delimiter_token] = vocab_dict[" "]
        del vocab_dict[" "]

    # add unk and pad token
    if unk_token is not None:
        vocab_dict[unk_token] = len(vocab_dict)

    if pad_token is not None:
        vocab_dict[pad_token] = len(vocab_dict)

    return vocab_dict


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 1. First, let's load the dataset
    raw_datasets = DatasetDict()
444
445
446
447
448
449
450
451
    task_name = data_args.task
    lang_id = data_args.language

    if task_name is None:
        raise ValueError(
            "Set --task should be set to '<xtreme_s_task>' " "(e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') "
        )
    if lang_id is None:
452
        raise ValueError(
453
454
455
            "Set --language should be set to the language id of the sub dataset "
            "config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'"
            " for multi-lingual fine-tuning."
456
        )
457
458
459
460
461
    if data_args.language_group is not None:
        if data_args.task != "fleurs-asr":
            raise ValueError("--language_group should only be used with --task=fleurs-asr")
        if data_args.language != "all":
            raise ValueError("--language_group should only be used with --language=all")
462

463
464
465
466
    if data_args.target_column_name is None:
        target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name]
    else:
        target_column_name = data_args.target_column_name
467

468
469
470
    # here we differentiate between tasks with text as the target and classification tasks
    is_text_target = target_column_name in ("transcription", "translation")

471
472
    config_name = ".".join([task_name.split("-")[0], lang_id])

473
474
475
    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
476
            config_name,
477
478
479
480
481
482
483
484
485
486
487
488
            split=data_args.train_split_name,
            use_auth_token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.audio_column_name not in raw_datasets["train"].column_names:
            raise ValueError(
                f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--audio_column_name` to the correct audio column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}."
            )

489
        if target_column_name not in raw_datasets["train"].column_names:
490
            raise ValueError(
491
                f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. "
492
493
494
495
496
497
498
499
500
501
                "Make sure to set `--target_column_name` to the correct text column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}."
            )

        if data_args.max_train_samples is not None:
            raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
502
            config_name,
503
504
505
506
507
508
509
510
            split=data_args.eval_split_name,
            use_auth_token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))

511
512
513
514
515
516
517
518
519
520
521
522
    if training_args.do_predict:
        raw_datasets["predict"] = load_dataset(
            data_args.dataset_name,
            config_name,
            split=data_args.predict_split_name,
            use_auth_token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.max_predict_samples is not None:
            raw_datasets["predict"] = raw_datasets["predict"].select(range(data_args.max_predict_samples))

523
    lang_list = next(iter(raw_datasets.values())).features["lang_id"].names
524
525
526
527
    if not is_text_target:
        label_list = next(iter(raw_datasets.values())).features[target_column_name].names
        num_labels = len(label_list)

528
529
530
531
532
533
534
535
536
537
538
539
    num_workers = data_args.preprocessing_num_workers

    lang_group = data_args.language_group
    if lang_group is not None:
        with training_args.main_process_first(desc="language group filter"):
            lang_group_id = next(iter(raw_datasets.values())).features["lang_group_id"].str2int(lang_group)
            raw_datasets = raw_datasets.filter(
                lambda lang_group: lang_group == lang_group_id,
                num_proc=num_workers,
                input_columns=["lang_group_id"],
            )

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    # 2. We remove some special characters from the datasets
    # that make training complicated and do not help in transcribing the speech
    # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
    # that could be easily picked up by the model
    chars_to_ignore_regex = (
        f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
    )

    def remove_special_characters(batch):
        if chars_to_ignore_regex is not None:
            batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[target_column_name]).lower() + " "
        else:
            batch["target_text"] = batch[target_column_name].lower() + " "
        return batch

    if is_text_target:
        with training_args.main_process_first(desc="dataset map special characters removal"):
            raw_datasets = raw_datasets.map(
                remove_special_characters,
                remove_columns=[target_column_name],
                desc="remove special characters from datasets",
            )

        # save special tokens for tokenizer
        word_delimiter_token = data_args.word_delimiter_token
        unk_token = data_args.unk_token
        pad_token = data_args.pad_token

    # 3. Next, let's load the config as we might need it to create
    # the tokenizer
    config = AutoConfig.from_pretrained(
        model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
    )

    if is_text_target:
        # 4. (Optional, for ASR and translation) If no tokenizer file is defined,
        # we create the vocabulary of the model by extracting all unique characters from
        # the training and evaluation datasets
        # We need to make sure that only first rank saves vocabulary
        # make sure all processes wait until vocab is created
        tokenizer_name_or_path = model_args.tokenizer_name_or_path
        tokenizer_kwargs = {}
        if tokenizer_name_or_path is None:
            # save vocab in training output dir
            tokenizer_name_or_path = training_args.output_dir

            vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")

            with training_args.main_process_first():
                if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
                    os.remove(vocab_file)

            with training_args.main_process_first(desc="dataset map vocabulary creation"):
                if not os.path.isfile(vocab_file):
                    os.makedirs(tokenizer_name_or_path, exist_ok=True)
                    vocab_dict = create_vocabulary_from_data(
                        raw_datasets,
                        word_delimiter_token=word_delimiter_token,
                        unk_token=unk_token,
                        pad_token=pad_token,
                    )

                    # save vocab dict to be loaded into tokenizer
                    with open(vocab_file, "w") as file:
                        json.dump(vocab_dict, file)

            # if tokenizer has just been created
            # it is defined by `tokenizer_class` if present in config else by `model_type`
            if not config.is_encoder_decoder:
                tokenizer_kwargs = {
                    "config": config if config.tokenizer_class is not None else None,
                    "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
                    "unk_token": unk_token,
                    "pad_token": pad_token,
                    "word_delimiter_token": word_delimiter_token,
                }
            else:
                tokenizer_kwargs = {}

    # 5. Now we can instantiate the feature extractor, tokenizer and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.

    # load feature_extractor and tokenizer
    if is_text_target:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            use_auth_token=data_args.use_auth_token,
            **tokenizer_kwargs,
        )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
    )

    # adapt config
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    # (speech translation requires pre-configured seq2seq models)
    if task_name != "covost2":
        config.update(
            {
                "feat_proj_dropout": model_args.feat_proj_dropout,
                "attention_dropout": model_args.attention_dropout,
                "hidden_dropout": model_args.hidden_dropout,
                "final_dropout": model_args.final_dropout,
                "mask_time_prob": model_args.mask_time_prob,
                "mask_time_length": model_args.mask_time_length,
                "mask_feature_prob": model_args.mask_feature_prob,
                "mask_feature_length": model_args.mask_feature_length,
                "gradient_checkpointing": training_args.gradient_checkpointing,
                "layerdrop": model_args.layerdrop,
649
                "ctc_zero_infinity": model_args.ctc_zero_infinity,
650
651
652
653
654
655
656
657
658
659
660
661
662
                "ctc_loss_reduction": model_args.ctc_loss_reduction,
                "activation_dropout": model_args.activation_dropout,
            }
        )
        if training_args.do_train:
            if is_text_target:
                config.pad_token_id = tokenizer.pad_token_id
                config.vocab_size = len(tokenizer)
            else:
                label_to_id = {v: i for i, v in enumerate(label_list)}
                config.label2id = label_to_id
                config.id2label = {id: label for label, id in label_to_id.items()}
                config.num_labels = num_labels
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

    # create model
    if target_column_name == "transcription":
        model = AutoModelForCTC.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            use_auth_token=data_args.use_auth_token,
        )
    elif config.is_encoder_decoder:
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            use_auth_token=data_args.use_auth_token,
        )
        if model.config.decoder_start_token_id is None:
            raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
    else:
        model = AutoModelForAudioClassification.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            use_auth_token=data_args.use_auth_token,
        )

    # freeze encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`

    # make sure that dataset decodes audio with correct sampling rate
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
        )

    # derive max & min input length for sample rate & max duration
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name

    # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
    phoneme_language = data_args.phoneme_language

    # Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    def prepare_dataset(batch):
        # load audio
        sample = batch[audio_column_name]

        inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
        batch["input_values"] = inputs.input_values[0]
        batch["length"] = len(batch["input_values"])

        # encode targets
        additional_kwargs = {}
        if phoneme_language is not None:
            additional_kwargs["phonemizer_lang"] = phoneme_language

        if is_text_target:
            batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
        else:
731
            batch["labels"] = batch[target_column_name]
732
733
734

        batch["lang"] = batch["lang_id"]

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

        if training_args.do_train:

            def is_audio_in_length_range(length):
                return length > min_input_length and length < max_input_length

            # filter data that is shorter than min_input_length
            vectorized_datasets["train"] = vectorized_datasets["train"].filter(
                is_audio_in_length_range,
                num_proc=num_workers,
                input_columns=["length"],
            )

    # 7. Next, we can prepare for the training step.
    # Let's use the appropriate XTREME-S evaluation metric,
    # instantiate a data collator and the trainer

    # Define evaluation metrics during training, *i.e.* word error rate, character error rate
    eval_metric = load_metric("xtreme_s", task_name)

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
        return

773
774
    def asr_logits_argmax(logits, labels):
        return logits.argmax(dim=-1)
775

776
    def compute_asr_metric(pred):
777
778
        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

779
        pred_str = tokenizer.batch_decode(pred.predictions)
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)

        metric = eval_metric.compute(predictions=pred_str, references=label_str)
        return metric

    def compute_classification_metric(pred):
        pred_ids = np.argmax(pred.predictions, axis=1)
        metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids)
        return metric

    # Now save everything to be able to create a single processor later
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        if is_text_target:
            tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)
    # wait until configs are saved in the main process before loading the processor
799
800
    if training_args.local_rank != -1:
        torch.distributed.barrier()
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

    if is_text_target:
        processor = AutoProcessor.from_pretrained(training_args.output_dir)
    else:
        processor = AutoFeatureExtractor.from_pretrained(training_args.output_dir)

    # Instantiate custom data collator
    data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target)

    # Initialize Trainer
    if target_column_name == "translation":
        trainer = Seq2SeqTrainer(
            model=model,
            data_collator=data_collator,
            args=training_args,
816
            preprocess_logits_for_metrics=asr_logits_argmax if training_args.predict_with_generate else None,
817
818
819
820
821
822
823
824
825
826
            compute_metrics=compute_asr_metric if training_args.predict_with_generate else None,
            train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
            eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
            tokenizer=feature_extractor,
        )
    else:
        trainer = Trainer(
            model=model,
            data_collator=data_collator,
            args=training_args,
827
            preprocess_logits_for_metrics=asr_logits_argmax if is_text_target else None,
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
            compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric,
            train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
            eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
            tokenizer=feature_extractor,
        )

    # 8. Finally, we can start training

    # Training
    if training_args.do_train:

        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples
            if data_args.max_train_samples is not None
            else len(vectorized_datasets["train"])
        )
        metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

862
    # Evaluation on the test set
863
    results = {}
864
    if training_args.do_predict:
865
        logger.info(f"*** Evaluating on the `{data_args.predict_split_name}` set ***")
866
867
868
869
870
871
        if data_args.per_lang_metrics:
            # separate the `test` dataset into language-specific subsets and compute metrics for each of them
            metrics = {}
            average_metrics = defaultdict(list)
            for lang_id in range(len(lang_list)):
                lang_name = lang_list[lang_id]
872
873
874
875
876
877
                with training_args.main_process_first(desc="per-language dataset filter"):
                    lang_dataset = vectorized_datasets["predict"].filter(
                        lambda lang: lang == lang_id,
                        num_proc=num_workers,
                        input_columns=["lang"],
                    )
878
                lang_metrics = trainer.evaluate(lang_dataset)
879
                redundant_metrics = ["eval_runtime", "eval_samples_per_second", "eval_steps_per_second", "eval_epoch"]
880
881
                for metric_name, value in lang_metrics.items():
                    average_metrics[metric_name].append(value)
882
                    if metric_name not in redundant_metrics:
883
884
885
886
887
                        metrics[f"{metric_name}_{lang_name}"] = value
            for metric_name, value in average_metrics.items():
                metrics[metric_name] = np.mean(value)
        else:
            metrics = trainer.evaluate(vectorized_datasets["predict"])
888
889
890
891
        max_predict_samples = (
            data_args.max_predict_samples
            if data_args.max_predict_samples is not None
            else len(vectorized_datasets["predict"])
892
        )
893
        metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"]))
894

895
896
897
        # make sure that the `predict` metrics end up in the log history for the model card
        trainer.log(OrderedDict(sorted(metrics.items())))

898
899
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
900
901
902
903

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
904
905
906
        "tasks": task_name,
        "tags": [task_name, data_args.dataset_name],
        "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}",
907
        "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
908
        "language": data_args.language,
909
910
911
912
913
914
915
916
917
918
919
920
    }

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results


if __name__ == "__main__":
    main()