test_tokenization_mbart.py 9.99 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import tempfile
17
18
import unittest

19
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
20
from transformers.testing_utils import nested_simplify, require_sentencepiece, require_tokenizers, require_torch
21
22

from .test_tokenization_common import TokenizerTesterMixin
23
24


25
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
26
27


28
if is_torch_available():
29
    from transformers.models.mbart.modeling_mbart import shift_tokens_right
30

31
32
33
34
EN_CODE = 250004
RO_CODE = 250020


35
36
@require_sentencepiece
@require_tokenizers
37
38
class MBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = MBartTokenizer
39
40
    rust_tokenizer_class = MBartTokenizerFast
    test_rust_tokenizer = True
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
                #                                       ^ unk: 2 + 1 = 3                  unk: 2 + 1 = 3 ^
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )


@require_torch
127
128
@require_sentencepiece
@require_tokenizers
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class MBartEnroIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/mbart-large-en-ro"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
        'Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.',
    ]
    expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE]

    @classmethod
    def setUpClass(cls):
143
144
145
        cls.tokenizer: MBartTokenizer = MBartTokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
        )
146
147
148
        cls.pad_token_id = 1
        return cls

149
150
151
152
153
    def check_language_codes(self):
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def test_enro_tokenizer_batch_encode_plus(self):
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_enro_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
        generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_romanian)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_enro_tokenizer_truncation(self):
        src_text = ["this is gunna be a long sentence " * 20]
        assert isinstance(src_text[0], str)
        desired_max_length = 10
170
        ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
171
172
173
        self.assertEqual(ids[-2], 2)
        self.assertEqual(ids[-1], EN_CODE)
        self.assertEqual(len(ids), desired_max_length)
174
175
176
177
178
179
180
181
182
183

    def test_mask_token(self):
        self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250026, 250001])

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = MBartTokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)
184
185
186

    @require_torch
    def test_batch_fairseq_parity(self):
187
188
189
190
191
        batch = self.tokenizer(self.src_text, padding=True)
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id).tolist()
192

193
194
195
196
        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        assert batch.input_ids[1][-2:] == [2, EN_CODE]
        assert batch.decoder_input_ids[1][0] == RO_CODE
        assert batch.decoder_input_ids[1][-1] == 2
197
        assert labels[1][-2:].tolist() == [2, RO_CODE]
198
199

    @require_torch
200
201
202
    def test_enro_tokenizer_prepare_batch(self):
        batch = self.tokenizer(
            self.src_text, padding=True, truncation=True, max_length=len(self.expected_src_tokens), return_tensors="pt"
203
        )
204
205
206
207
208
209
210
211
212
213
214
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(
                self.tgt_text,
                padding=True,
                truncation=True,
                max_length=len(self.expected_src_tokens),
                return_tensors="pt",
            )
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

215
216
217
218
219
220
221
222
223
224
225
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 14), batch.input_ids.shape)
        self.assertEqual((2, 14), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(self.expected_src_tokens, result)
        self.assertEqual(2, batch.decoder_input_ids[0, -1])  # EOS
        # Test that special tokens are reset
        self.assertEqual(self.tokenizer.prefix_tokens, [])
        self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE])

226
227
228
229
230
231
232
    def test_seq2seq_max_length(self):
        batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

233
234
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 10)
235
236
237

    @require_torch
    def test_tokenizer_translation(self):
238
239
240
        inputs = self.tokenizer._build_translation_inputs(
            "A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR"
        )
241
242
243
244
245
246
247
248
249
250
251

        self.assertEqual(
            nested_simplify(inputs),
            {
                # A, test, EOS, en_XX
                "input_ids": [[62, 3034, 2, 250004]],
                "attention_mask": [[1, 1, 1, 1]],
                # ar_AR
                "forced_bos_token_id": 250001,
            },
        )