test_modeling_siglip.py 39.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch SigLIP model."""
NielsRogge's avatar
NielsRogge committed
16
17
18
19
20

import inspect
import os
import tempfile
import unittest
21
from typing import Tuple
NielsRogge's avatar
NielsRogge committed
22
23
24

import numpy as np
import requests
25
26
from parameterized import parameterized
from pytest import mark
NielsRogge's avatar
NielsRogge committed
27
28
29

from transformers import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
from transformers.testing_utils import (
30
    require_flash_attn,
NielsRogge's avatar
NielsRogge committed
31
    require_torch,
32
33
    require_torch_gpu,
    require_torch_sdpa,
NielsRogge's avatar
NielsRogge committed
34
35
36
37
    require_vision,
    slow,
    torch_device,
)
38
39
40
41
42
43
44
from transformers.utils import (
    is_torch_available,
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
    is_torch_sdpa_available,
    is_vision_available,
)
NielsRogge's avatar
NielsRogge committed
45
46
47
48
49
50
51

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
52
    is_flaky,
NielsRogge's avatar
NielsRogge committed
53
54
55
56
57
58
59
60
61
    random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

62
    from transformers import SiglipForImageClassification, SiglipModel, SiglipTextModel, SiglipVisionModel
NielsRogge's avatar
NielsRogge committed
63

64
65
if is_torch_sdpa_available():
    from torch.nn.attention import SDPBackend, sdpa_kernel
NielsRogge's avatar
NielsRogge committed
66
67
68
69
70
71
72

if is_vision_available():
    from PIL import Image

    from transformers import SiglipProcessor


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
class SiglipModelTesterMixin(ModelTesterMixin):
    def test_eager_matches_sdpa_inference(
        self,
        torch_dtype: str,
        use_attention_mask_options: Tuple[bool, ...] = (True, False),
        logit_keys: Tuple[str, ...] = ("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
    ):
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )

        # Convert to torch dtype
        dtypes = {
            "float16": torch.float16,
            "bfloat16": torch.bfloat16,
            "float32": torch.float32,
        }
        torch_dtype = dtypes[torch_dtype]

        atols = {
            torch.float32: 1e-5,
            torch.bfloat16: 3e-2,
            torch.float16: 5e-3,
        }
        rtols = {
            torch.float32: 1e-4,
            torch.bfloat16: 3e-2,
            torch.float16: 5e-3,
        }

        atol = atols[torch_dtype]
        rtol = rtols[torch_dtype]

        def get_mean_reldiff(msg, current_case, x, ref, atol, rtol):
            return f"{msg} {current_case}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                # Load the model with SDPA
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                # Load model with eager attention
                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

            self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
            self.assertTrue(model_eager.config._attn_implementation == "eager")

            for name, submodule in model_eager.named_modules():
                class_name = submodule.__class__.__name__
                if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
                    raise ValueError("The eager model should not have SDPA attention layers")

            has_sdpa = False
            for name, submodule in model_sdpa.named_modules():
                class_name = submodule.__class__.__name__
                if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
                    has_sdpa = True
                    break
            if not has_sdpa and model_sdpa.config.model_type != "falcon":
                raise ValueError("The SDPA model should have SDPA attention layers")

            # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving the model each time,
            # but it would be nicer to have an efficient way to use parameterized.expand
            cases = [
                (use_mask, output_attentions, sdpa_backend, batch_size)
                for use_mask in use_attention_mask_options
                for output_attentions in [True, False]
                for sdpa_backend in [
                    SDPBackend.MATH,
                    [SDPBackend.FLASH_ATTENTION, SDPBackend.MATH],
                    [SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
                    [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
                ]
                for batch_size in [1, 5]
            ]
            fail_cases = []

            for use_mask, output_attentions, sdpa_backend, batch_size in cases:
                processed_inputs = inputs_dict.copy()

                # convert to torch_dtype
                if "pixel_values" in processed_inputs:
                    processed_inputs["pixel_values"] = processed_inputs["pixel_values"].to(torch_dtype)

                # slice for different batch sizes
                for key in ["pixel_values", "input_ids", "attention_mask"]:
                    if key in processed_inputs:
                        processed_inputs[key] = processed_inputs[key][:batch_size]

                # set attention mask with left padding
                if not use_mask:
                    processed_inputs.pop("attention_mask", None)
                else:
                    dummy_attention_mask = processed_inputs["attention_mask"]
                    dummy_attention_mask[:] = 1
                    dummy_attention_mask[:, :1] = 0
                    processed_inputs["attention_mask"] = dummy_attention_mask

                processed_inputs["output_attentions"] = output_attentions
                processed_inputs["output_hidden_states"] = True

                current_case = (
                    f"padding_side=left, use_mask={use_mask}, batch_size={batch_size}, sdpa_backend={sdpa_backend}"
                )

                prepared_inputs = self._prepare_for_class(processed_inputs, model_class)

                with torch.no_grad():
                    try:
                        with sdpa_kernel(sdpa_backend):
                            outputs_eager = model_eager(**prepared_inputs)
                            outputs_sdpa = model_sdpa(**prepared_inputs)
                    except Exception as e:
                        fail_cases.append(f"{current_case}: {e}")
                        continue

                for key in logit_keys:
                    eager_logits = outputs_eager[key]
                    sdpa_logits = outputs_sdpa[key]

                    if use_mask:
                        eager_logits = eager_logits[:, 1:]
                        sdpa_logits = sdpa_logits[:, 1:]

                    is_close = torch.allclose(eager_logits, sdpa_logits, atol=atol, rtol=rtol)
                    if not is_close:
                        fail_cases.append(get_mean_reldiff(key, current_case, sdpa_logits, eager_logits, atol, rtol))

            self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))


NielsRogge's avatar
NielsRogge committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
class SiglipVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

        # in ViT, the seq length equals the number of patches
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches

    # Copied from tests.models.clip.test_modeling_clip.CLIPVisionModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return SiglipVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = SiglipVisionModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    # Copied from tests.models.clip.test_modeling_clip.CLIPVisionModelTester.prepare_config_and_inputs_for_common
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
302
class SiglipVisionModelTest(SiglipModelTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
303
304
305
306
307
308
309
310
311
312
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as SIGLIP does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (SiglipVisionModel,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
313
314
315
316
317
318
    # MP works but offload doesn't work when the MultiheadAttention is offloaded
    # TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
    # in the dispatch_model function
    test_cpu_offload = False
    test_disk_offload_safetensors = False
    test_disk_offload_bin = False
NielsRogge's avatar
NielsRogge committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332

    def setUp(self):
        self.model_tester = SiglipVisionModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=SiglipVisionConfig, has_text_modality=False, hidden_size=37
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="SIGLIP does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

333
    def test_model_get_set_embeddings(self):
NielsRogge's avatar
NielsRogge committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training(self):
        pass

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="SiglipVisionModel does not support standalone training")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="SiglipVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="SiglipVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

    @slow
    def test_model_from_pretrained(self):
388
389
390
        model_name = "google/siglip-base-patch16-224"
        model = SiglipVisionModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
391

392
393
394
395
396
397
398
399
400
401
402
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype,
            logit_keys=("pooler_output", "last_hidden_state"),
            use_attention_mask_options=(False,),
        )

NielsRogge's avatar
NielsRogge committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

class SiglipTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return SiglipTextConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = SiglipTextModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTester.prepare_config_and_inputs_for_common
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
492
class SiglipTextModelTest(SiglipModelTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    all_model_classes = (SiglipTextModel,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_head_masking = False
    model_split_percents = [0.5, 0.8, 0.9]

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.setUp with CLIP->Siglip
    def setUp(self):
        self.model_tester = SiglipTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=SiglipTextConfig, hidden_size=37)

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_config
    def test_config(self):
        self.config_tester.run_common_tests()

    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_model
    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

513
    @unittest.skip(reason="SiglipTextModel does not support standalone training")
NielsRogge's avatar
NielsRogge committed
514
515
516
    def test_training(self):
        pass

517
    @unittest.skip(reason="SiglipTextModel does not support standalone training")
NielsRogge's avatar
NielsRogge committed
518
519
520
    def test_training_gradient_checkpointing(self):
        pass

521
    @unittest.skip(reason="SiglipTextModel does not support standalone training")
NielsRogge's avatar
NielsRogge committed
522
523
524
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

525
    @unittest.skip(reason="SiglipTextModel does not support standalone training")
NielsRogge's avatar
NielsRogge committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="Siglip does not use inputs_embeds")
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_inputs_embeds
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="SiglipTextModel has no base class and is not available in MODEL_MAPPING")
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_save_load_fast_init_from_base
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="SiglipTextModel has no base class and is not available in MODEL_MAPPING")
    # Copied from tests.models.clip.test_modeling_clip.CLIPTextModelTest.test_save_load_fast_init_to_base
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

    @slow
    def test_model_from_pretrained(self):
550
551
552
        model_name = "google/siglip-base-patch16-224"
        model = SiglipTextModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
553

554
555
556
557
558
559
560
561
562
563
564
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype,
            logit_keys=("pooler_output", "last_hidden_state"),
            use_attention_mask_options=(False, True),
        )

NielsRogge's avatar
NielsRogge committed
565
566
567
568
569
570
571
572
573
574
575

class SiglipModelTester:
    def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

        self.parent = parent
        self.text_model_tester = SiglipTextModelTester(parent, **text_kwargs)
        self.vision_model_tester = SiglipVisionModelTester(parent, **vision_kwargs)
576
        self.batch_size = self.text_model_tester.batch_size  # need bs for batching_equivalence test
NielsRogge's avatar
NielsRogge committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        self.is_training = is_training

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()

        config = self.get_config()

        return config, input_ids, attention_mask, pixel_values

    def get_config(self):
        return SiglipConfig.from_text_vision_configs(
            self.text_model_tester.get_config(),
            self.vision_model_tester.get_config(),
        )

    def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
        model = SiglipModel(config).to(torch_device).eval()
        with torch.no_grad():
            result = model(input_ids, pixel_values, attention_mask)
        self.parent.assertEqual(
            result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
        )
        self.parent.assertEqual(
            result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "return_loss": False,
        }
        return config, inputs_dict


@require_torch
618
class SiglipModelTest(SiglipModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
619
620
621
622
623
624
625
    all_model_classes = (SiglipModel,) if is_torch_available() else ()
    pipeline_model_mapping = {"feature-extraction": SiglipModel} if is_torch_available() else {}
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False
626
627
628
629
630
631
    # MP works but offload doesn't work when the MultiheadAttention is offloaded
    # TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
    # in the dispatch_model function
    test_cpu_offload = False
    test_disk_offload_safetensors = False
    test_disk_offload_bin = False
NielsRogge's avatar
NielsRogge committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.setUp with CLIP->Siglip
    def setUp(self):
        self.model_tester = SiglipModelTester(self)

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_model
    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="Hidden_states is tested in individual model tests")
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_hidden_states_output
    def test_hidden_states_output(self):
        pass

    @unittest.skip(reason="Inputs_embeds is tested in individual model tests")
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_inputs_embeds
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Retain_grad is tested in individual model tests")
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_retain_grad_hidden_states_attentions
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(reason="SiglipModel does not have input/output embeddings")
658
659
    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_model_get_set_embeddings
    def test_model_get_set_embeddings(self):
NielsRogge's avatar
NielsRogge committed
660
661
662
663
664
665
666
667
668
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest._create_and_check_torchscript with CLIP->Siglip
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
669
            self.skipTest(reason="test_torchscript is set to False")
NielsRogge's avatar
NielsRogge committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                pixel_values = inputs_dict["pixel_values"]  # Siglip needs pixel_values
                traced_model = torch.jit.trace(model, (input_ids, pixel_values))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    # Copied from tests.models.clip.test_modeling_clip.CLIPModelTest.test_load_vision_text_config with CLIP->Siglip
    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save SiglipConfig and check if we can load SiglipVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = SiglipVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save SiglipConfig and check if we can load SiglipTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = SiglipTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())

    @slow
    def test_model_from_pretrained(self):
756
757
758
        model_name = "google/siglip-base-patch16-224"
        model = SiglipModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
759

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference_equivalence(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
                model.to(torch_device)

                dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
                dummy_input_ids = inputs_dict["input_ids"]

                outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
                outputs_fa = model_fa(
                    pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
                )

                self.assertTrue(
                    torch.allclose(outputs.logits_per_image, outputs_fa.logits_per_image, atol=4e-2, rtol=4e-2),
                    f"Image logits max diff: {torch.max(torch.abs(outputs.logits_per_image - outputs_fa.logits_per_image))}",
                )
                self.assertTrue(
                    torch.allclose(outputs.logits_per_text, outputs_fa.logits_per_text, atol=4e-2, rtol=4e-2),
                    f"Text logits max diff: {torch.max(torch.abs(outputs.logits_per_text - outputs_fa.logits_per_text))}",
                )

                # Test with attention mask
                dummy_attention_mask = inputs_dict["attention_mask"]

                if dummy_attention_mask is not None:
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0

                outputs = model(
                    pixel_values=dummy_pixel_values,
                    input_ids=dummy_input_ids,
                    attention_mask=dummy_attention_mask,
                    output_hidden_states=True,
                )
                outputs_fa = model_fa(
                    pixel_values=dummy_pixel_values,
                    input_ids=dummy_input_ids,
                    attention_mask=dummy_attention_mask,
                    output_hidden_states=True,
                )

                self.assertTrue(
                    torch.allclose(outputs.logits_per_image, outputs_fa.logits_per_image, atol=4e-2, rtol=4e-2),
                    f"Logits max diff: {torch.max(torch.abs(outputs.logits_per_image - outputs_fa.logits_per_image))}",
                )
                self.assertTrue(
                    torch.allclose(outputs.logits_per_text, outputs_fa.logits_per_text, atol=4e-2, rtol=4e-2),
                    f"Logits max diff: {torch.max(torch.abs(outputs.logits_per_text - outputs_fa.logits_per_text))}",
                )

                # check with inference + dropout
                model.train()
                _ = model_fa(
                    pixel_values=dummy_pixel_values,
                    input_ids=dummy_input_ids,
                    attention_mask=dummy_attention_mask,
                    output_hidden_states=True,
                )

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    def test_flash_attn_2_inference_equivalence_right_padding(self):
        self.skipTest("SigLIP does not support right padding")

    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype,
            logit_keys=("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
            use_attention_mask_options=(False, True),
        )

NielsRogge's avatar
NielsRogge committed
854

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
class SiglipForImageClassificationModelTester(SiglipModelTester):
    def __init__(self, parent):
        super().__init__(parent)
        self.batch_size = self.vision_model_tester.batch_size
        self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
        self.hidden_size = self.vision_model_tester.hidden_size
        self.seq_length = self.vision_model_tester.seq_length

    def prepare_config_and_inputs(self):
        _, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
        config = self.get_config()

        return config, pixel_values

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
877
class SiglipForImageClassificationModelTest(SiglipModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
878
879
880
881
882
883
884
    all_model_classes = (SiglipForImageClassification,) if is_torch_available() else ()
    pipeline_model_mapping = {"image-classification": SiglipForImageClassification} if is_torch_available() else {}
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False
885
886
887
888
889
890
    # MP works but offload doesn't work when the MultiheadAttention is offloaded
    # TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
    # in the dispatch_model function
    test_cpu_offload = False
    test_disk_offload_safetensors = False
    test_disk_offload_bin = False
891
892
893
894
895
896
897
898
899

    def setUp(self):
        self.model_tester = SiglipForImageClassificationModelTester(self)

    @unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
900
    def test_model_get_set_embeddings(self):
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

919
920
921
922
923
924
925
926
927
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype, logit_keys=("logits",), use_attention_mask_options=(False,)
        )

928

NielsRogge's avatar
NielsRogge committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
# We will verify our results on an image of cute cats
def prepare_img():
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    image = Image.open(requests.get(url, stream=True).raw)
    return image


@require_vision
@require_torch
class SiglipModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model_name = "google/siglip-base-patch16-224"
        model = SiglipModel.from_pretrained(model_name).to(torch_device)
        processor = SiglipProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=["a photo of 2 cats", "a photo of 2 dogs"], images=image, padding="max_length", return_tensors="pt"
        ).to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
            logits_per_image = outputs.logits_per_image
            logits_per_text = outputs.logits_per_text

        # verify the logits
        self.assertEqual(
            logits_per_image.shape,
            torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            logits_per_text.shape,
            torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )

        expected_logits = torch.tensor([[-0.7567, -10.3354]], device=torch_device)

        self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))

        # verify the probs
        probs = torch.sigmoid(logits_per_image)  # these are the probabilities
        expected_probs = torch.tensor([[3.1937e-01, 3.2463e-05]], device=torch_device)
        self.assertTrue(torch.allclose(probs, expected_probs, atol=1e-3))
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

    @slow
    def test_inference_interpolate_pos_encoding(self):
        model_name = "google/siglip-base-patch16-224"
        model = SiglipModel.from_pretrained(model_name).to(torch_device)

        # 640 x 480 image
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        processor = SiglipProcessor.from_pretrained(model_name, do_resize=False, size={"height": 480, "width": 640})

        inputs = processor(text="what's in the image", images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs, interpolate_pos_encoding=True)

        # verify the shape
        # patch size = 16
        # batch size 1, (640/16) * (480/16) = 1200 patches, 768 hidden size
        expected_shape = torch.Size((1, 1200, 768))

        self.assertEqual(outputs.vision_model_output.last_hidden_state.shape, expected_shape)