run_t5_mlm_flax.py 44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Pretraining the library models for T5-like span-masked language modeling on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be pretrained by this script:
https://huggingface.co/models?filter=t5
"""
Arthur's avatar
Arthur committed
22

Suraj Patil's avatar
Suraj Patil committed
23
import json
24
import logging
25
import math
26
27
28
import os
import sys
import time
29
30
31
32
from dataclasses import asdict, dataclass, field

# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from enum import Enum
33
from itertools import chain
34
35
36
37
38
39
from pathlib import Path
from typing import Dict, List, Optional

import flax
import jax
import jax.numpy as jnp
40
import numpy as np
41
import optax
42
from datasets import load_dataset
43
from flax import jax_utils, traverse_util
44
from flax.jax_utils import pad_shard_unpad
45
46
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
47
from huggingface_hub import HfApi
48
49
from tqdm import tqdm

50
51
52
from transformers import (
    CONFIG_MAPPING,
    FLAX_MODEL_FOR_MASKED_LM_MAPPING,
53
    AutoTokenizer,
54
55
56
57
58
59
60
61
62
    BatchEncoding,
    FlaxT5ForConditionalGeneration,
    HfArgumentParser,
    PreTrainedTokenizerBase,
    T5Config,
    is_tensorboard_available,
    set_seed,
)
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
63
from transformers.utils import send_example_telemetry
64
65
66
67
68
69


MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


132
133
134
135
136
137
138
139
140
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
141
            "help": (
142
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
143
            )
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
166
167
168
169
            "help": (
                "Floating-point format in which the model weights should be initialized and trained. Choose one of"
                " `[float32, float16, bfloat16]`."
            )
170
171
        },
    )
172
173
    token: str = field(
        default=None,
174
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
175
            "help": (
176
177
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
178
            )
179
180
        },
    )
181
182
183
184
185
186
187
188
189
190
191
192
193
194


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
195
196
197
198
199
200
201
202
203
204
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to trust the execution of code from datasets/models defined on the Hub."
                " This option should only be set to `True` for repositories you trust and in which you have read the"
                " code, as it will execute code present on the Hub on your local machine."
            )
        },
    )
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    train_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
    )
    validation_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
233
            "help": (
                "The maximum total input sequence length after tokenization and masking. Sequences longer than this"
                " will be truncated. Default to the max input length of the model."
            )
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"}
    )
    mean_noise_span_length: float = field(
        default=3.0,
        metadata={"help": "Mean span length of masked tokens"},
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length):
    """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ .

    Training parameters to avoid padding with random_spans_noise_mask.
    When training a model with random_spans_noise_mask, we would like to set the other
    training hyperparmeters in a way that avoids padding.
    This function helps us compute these hyperparameters.
    We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens,
    and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens.
    This function tells us the required number of tokens in the raw example (for split_tokens())
    as well as the length of the encoded targets. Note that this function assumes
    the inputs and targets will have EOS appended and includes that in the reported length.

    Args:
        inputs_length: an integer - desired length of the tokenized inputs sequence
        noise_density: a float
        mean_noise_span_length: a float
    Returns:
        tokens_length: length of original text in tokens
        targets_length: an integer - length in tokens of encoded targets sequence
    """

    def _tokens_length_to_inputs_length_targets_length(tokens_length):
        num_noise_tokens = int(round(tokens_length * noise_density))
        num_nonnoise_tokens = tokens_length - num_noise_tokens
        num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
        # inputs contain all nonnoise tokens, sentinels for all noise spans
        # and one EOS token.
        _input_length = num_nonnoise_tokens + num_noise_spans + 1
        _output_length = num_noise_tokens + num_noise_spans + 1
        return _input_length, _output_length

    tokens_length = inputs_length

    while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length:
        tokens_length += 1

    inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length)

    # minor hack to get the targets length to be equal to inputs length
    # which is more likely to have been set to a nice round number.
    if noise_density == 0.5 and targets_length > inputs_length:
        tokens_length -= 1
        targets_length -= 1
    return tokens_length, targets_length


@flax.struct.dataclass
class FlaxDataCollatorForT5MLM:
    """
    Data collator used for T5 span-masked language modeling.
    It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length.
    For more information on how T5 span-masked language modeling works, one can take a look
    at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__
    or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ .

    Args:
        tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
            The tokenizer used for encoding the data.
        noise_density (:obj:`float`):
            The probability with which to (randomly) mask tokens in the input.
        mean_noise_span_length (:obj:`float`):
            The average span length of the masked tokens.
        input_length (:obj:`int`):
            The expected input length after masking.
        target_length (:obj:`int`):
            The expected target length after masking.
        pad_token_id: (:obj:`int`):
            The pad token id of the model
        decoder_start_token_id: (:obj:`int):
            The decoder start token id of the model
    """

    tokenizer: PreTrainedTokenizerBase
    noise_density: float
    mean_noise_span_length: float
    input_length: int
    target_length: int
    pad_token_id: int
    decoder_start_token_id: int

341
    def __call__(self, examples: List[Dict[str, np.ndarray]]) -> BatchEncoding:
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        # convert list to dict and tensorize input
        batch = BatchEncoding(
            {k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()}
        )

        input_ids = batch["input_ids"]
        batch_size, expandend_input_length = input_ids.shape

        mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)])
        labels_mask = ~mask_indices

        input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8))
        labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8))

        batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel)
        batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel)

        if batch["input_ids"].shape[-1] != self.input_length:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
361
                f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but"
362
                f" should be {self.input_length}."
363
364
365
366
            )

        if batch["labels"].shape[-1] != self.target_length:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
367
368
                f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be"
                f" {self.target_length}."
369
370
            )

371
        # to check that tokens are correctly preprocessed, one can run `self.tokenizer.batch_decode(input_ids)` and `self.tokenizer.batch_decode(labels)` here...
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        batch["decoder_input_ids"] = shift_tokens_right(
            batch["labels"], self.pad_token_id, self.decoder_start_token_id
        )

        return batch

    def create_sentinel_ids(self, mask_indices):
        """
        Sentinel ids creation given the indices that should be masked.
        The start indices of each mask are replaced by the sentinel ids in increasing
        order. Consecutive mask indices to be deleted are replaced with `-1`.
        """
        start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices
        start_indices[:, 0] = mask_indices[:, 0]

        sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices)
388
        sentinel_ids = np.where(sentinel_ids != 0, (len(self.tokenizer) - sentinel_ids), 0)
389
390
391
392
393
394
395
396
397
398
399
400
        sentinel_ids -= mask_indices - start_indices

        return sentinel_ids

    def filter_input_ids(self, input_ids, sentinel_ids):
        """
        Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting.
        This will reduce the sequence length from `expanded_inputs_length` to `input_length`.
        """
        batch_size = input_ids.shape[0]

        input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids)
401
402
403
        # input_ids tokens and sentinel tokens are >= 0, tokens < 0 are
        # masked tokens coming after sentinel tokens and should be removed
        input_ids = input_ids_full[input_ids_full >= 0].reshape((batch_size, -1))
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        input_ids = np.concatenate(
            [input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1
        )
        return input_ids

    def random_spans_noise_mask(self, length):
        """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ .

        Noise mask consisting of random spans of noise tokens.
        The number of noise tokens and the number of noise spans and non-noise spans
        are determined deterministically as follows:
        num_noise_tokens = round(length * noise_density)
        num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length)
        Spans alternate between non-noise and noise, beginning with non-noise.
        Subject to the above restrictions, all masks are equally likely.

        Args:
            length: an int32 scalar (length of the incoming token sequence)
            noise_density: a float - approximate density of output mask
            mean_noise_span_length: a number

        Returns:
            a boolean tensor with shape [length]
        """

        orig_length = length

        num_noise_tokens = int(np.round(length * self.noise_density))
432
        num_nonnoise_tokens = length - num_noise_tokens
433
434
        # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
        num_noise_tokens = min(max(num_noise_tokens, 1), length - 1)
435
436
        # num_noise_tokens should be less than num_noise_tokens and num_nonnoise_tokens
        num_noise_spans = int(np.round(min(num_noise_tokens, num_nonnoise_tokens) / self.mean_noise_span_length))
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

        # avoid degeneracy by ensuring positive number of noise spans
        num_noise_spans = max(num_noise_spans, 1)

        # pick the lengths of the noise spans and the non-noise spans
        def _random_segmentation(num_items, num_segments):
            """Partition a sequence of items randomly into non-empty segments.
            Args:
                num_items: an integer scalar > 0
                num_segments: an integer scalar in [1, num_items]
            Returns:
                a Tensor with shape [num_segments] containing positive integers that add
                up to num_items
            """
            mask_indices = np.arange(num_items - 1) < (num_segments - 1)
            np.random.shuffle(mask_indices)
            first_in_segment = np.pad(mask_indices, [[1, 0]])
            segment_id = np.cumsum(first_in_segment)
455
456
            # count length of sub segments assuming that list is sorted
            _, segment_length = np.unique(segment_id, return_counts=True)
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
            return segment_length

        noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans)
        nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans)

        interleaved_span_lengths = np.reshape(
            np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2]
        )
        span_starts = np.cumsum(interleaved_span_lengths)[:-1]
        span_start_indicator = np.zeros((length,), dtype=np.int8)
        span_start_indicator[span_starts] = True
        span_num = np.cumsum(span_start_indicator)
        is_noise = np.equal(span_num % 2, 1)

        return is_noise[:orig_length]


474
475
476
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray:
    """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
    the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
477
    num_samples = len(samples_idx)
478
479
480
481
482
483
484
485
486
487
    if drop_last:
        samples_to_remove = num_samples % batch_size
        if samples_to_remove != 0:
            samples_idx = samples_idx[:-samples_to_remove]
        sections_split = num_samples // batch_size
        samples_idx = samples_idx.reshape((sections_split, batch_size))
    else:
        sections_split = math.ceil(num_samples / batch_size)
        samples_idx = np.array_split(samples_idx, sections_split)
    return samples_idx
488
489


490
def write_train_metric(summary_writer, train_metrics, train_time, step):
491
492
493
494
495
496
497
498
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

499
500

def write_eval_metric(summary_writer, eval_metrics, step):
501
502
503
504
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


Suraj Patil's avatar
Suraj Patil committed
505
def main():
506
507
508
509
510
511
512
513
514
515
516
517
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

518
519
520
521
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_t5_mlm", model_args, data_args, framework="flax")

522
523
524
525
526
527
528
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
529
            f"Output directory ({training_args.output_dir}) already exists and is not empty. "
530
531
532
533
534
535
            "Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
536
        level=logging.INFO,
537
538
539
540
541
542
543
544
545
546
547
548
        datefmt="[%X]",
    )

    # Log on each process the small summary:
    logger = logging.getLogger(__name__)

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

549
550
    # Handle the repository creation
    if training_args.push_to_hub:
551
552
553
554
555
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
556
557
        api = HfApi()
        repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
558

559
560
561
562
563
564
565
566
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
567
568
569
570
        datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
571
            token=model_args.token,
572
            num_proc=data_args.preprocessing_num_workers,
573
            trust_remote_code=data_args.trust_remote_code,
574
        )
575
576
577
578
579
580
581

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
582
                token=model_args.token,
583
                num_proc=data_args.preprocessing_num_workers,
584
                trust_remote_code=data_args.trust_remote_code,
585
586
587
588
589
590
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
591
                token=model_args.token,
592
                num_proc=data_args.preprocessing_num_workers,
593
                trust_remote_code=data_args.trust_remote_code,
594
595
596
597
598
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
599
            extension = data_args.train_file.split(".")[-1]
600
601
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
602
            extension = data_args.validation_file.split(".")[-1]
603
604
        if extension == "txt":
            extension = "text"
605
606
607
608
        datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
609
            token=model_args.token,
610
            num_proc=data_args.preprocessing_num_workers,
611
        )
612

613
614
615
616
617
618
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
619
                token=model_args.token,
620
                num_proc=data_args.preprocessing_num_workers,
621
622
623
624
625
626
            )
            datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
627
                token=model_args.token,
628
                num_proc=data_args.preprocessing_num_workers,
629
            )
630
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
631
    # https://huggingface.co/docs/datasets/loading_datasets.
632
633
634
635

    # Load pretrained model and tokenizer

    if model_args.tokenizer_name:
636
        tokenizer = AutoTokenizer.from_pretrained(
637
638
639
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
640
            token=model_args.token,
641
642
        )
    elif model_args.model_name_or_path:
643
        tokenizer = AutoTokenizer.from_pretrained(
644
645
646
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
647
            token=model_args.token,
648
649
650
        )
    else:
        raise ValueError(
651
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
652
653
654
655
656
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.config_name:
        config = T5Config.from_pretrained(
657
658
659
            model_args.config_name,
            cache_dir=model_args.cache_dir,
            vocab_size=len(tokenizer),
660
            token=model_args.token,
661
662
        )
    elif model_args.model_name_or_path:
663
664
665
        config = T5Config.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
666
            token=model_args.token,
667
        )
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
    # Since we make sure that all sequences are of the same length, no attention_mask is needed.
    def tokenize_function(examples):
        return tokenizer(examples[text_column_name], return_attention_mask=False)

    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
    # To ensure that the input length is `max_seq_length`, we need to increase the maximum length
    # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
    expanded_inputs_length, targets_length = compute_input_and_target_lengths(
        inputs_length=max_seq_length,
        noise_density=data_args.mlm_probability,
        mean_noise_span_length=data_args.mean_noise_span_length,
    )

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length.
    def group_texts(examples):
        # Concatenate all texts.
707
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
708
709
710
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
711
712
        if total_length >= expanded_inputs_length:
            total_length = (total_length // expanded_inputs_length) * expanded_inputs_length
713
714
715
716
717
718
719
720
721
722
723
724
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + expanded_inputs_length] for i in range(0, total_length, expanded_inputs_length)]
            for k, t in concatenated_examples.items()
        }
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
    # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
    # might be slower to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
725
    # https://huggingface.co/docs/datasets/process#map
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    tokenized_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

755
756
    if model_args.model_name_or_path:
        model = FlaxT5ForConditionalGeneration.from_pretrained(
757
758
759
760
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
761
            token=model_args.token,
762
763
        )
    else:
Suraj Patil's avatar
Suraj Patil committed
764
        config.vocab_size = len(tokenizer)
765
766
767
768
769
        model = FlaxT5ForConditionalGeneration(
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
        )
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = FlaxDataCollatorForT5MLM(
        tokenizer=tokenizer,
        noise_density=data_args.mlm_probability,
        mean_noise_span_length=data_args.mean_noise_span_length,
        input_length=max_seq_length,
        target_length=targets_length,
        pad_token_id=model.config.pad_token_id,
        decoder_start_token_id=model.config.decoder_start_token_id,
    )

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
786
787
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
788
789
790

    num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs

791
792
793
    num_of_hosts = jax.process_count()
    current_host_idx = jax.process_index()

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
    )
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
813
814
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
815
816
817
818
819
820
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
821
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
822
823
824
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
825
826
827
828
829
830
831
832
833
834
835
836
837
838
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )
839
840

    # Setup train state
841
    state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)

        def loss_fn(params):
            labels = batch.pop("labels")

            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]

            # compute loss
            loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()

            return loss

        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)

        metrics = jax.lax.pmean(
            {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
        )

        return new_state, metrics, new_dropout_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")

        logits = model(**batch, params=params, train=False)[0]

        # compute loss
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))

        # compute accuracy
        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels)

        # summarize metrics
        metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
895
    epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
896
897
898
899
900
901
902
903
904
905
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()
        train_metrics = []

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        num_train_samples = len(tokenized_datasets["train"])
906
        # Avoid using jax.numpy here in case of TPU training
907
        train_samples_idx = np.random.permutation(np.arange(num_train_samples))
908
909
910
        train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)

        # Gather the indexes for creating the batch and do a training step
911
        for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
912
913
914
            samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples)

915
916
917
918
919
            local_host_model_inputs = {
                key: np.split(model_inputs.data[key], num_of_hosts, axis=0)[current_host_idx]
                for key, value in model_inputs.data.items()
            }

920
            # Model forward
921
            model_inputs = shard(local_host_model_inputs)
922
923
924
            state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
            train_metrics.append(train_metric)

925
            cur_step = epoch * (num_train_samples // train_batch_size) + step
926

927
            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
928
929
930
931
932
933
934
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
935
936
                    f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
                    f" {train_metric['learning_rate'].mean()})"
937
938
939
                )

                train_metrics = []
940

941
942
943
            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                num_eval_samples = len(tokenized_datasets["validation"])
944
945
                # Avoid using jax.numpy here in case of TPU training
                eval_samples_idx = np.arange(num_eval_samples)
946
                eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
947

948
949
950
951
                eval_metrics = []
                for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
                    samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
                    model_inputs = data_collator(samples)
952

953
                    # Model forward
954
955
956
                    metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                        state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
                    )
957
                    eval_metrics.append(metrics)
958

959
960
                # get eval metrics
                eval_metrics = get_metrics(eval_metrics)
961
                eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
962

963
964
                # Update progress bar
                epochs.write(f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})")
965

966
967
968
969
970
971
972
                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
973
                    params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
974
975
976
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
977
978
979
980
981
982
983
                        api.upload_folder(
                            commit_message=f"Saving weights and logs of step {cur_step}",
                            folder_path=training_args.output_dir,
                            repo_id=repo_id,
                            repo_type="model",
                            token=training_args.hub_token,
                        )
Suraj Patil's avatar
Suraj Patil committed
984
985
986
    # Eval after training
    if training_args.do_eval:
        num_eval_samples = len(tokenized_datasets["validation"])
987
988
        # Avoid using jax.numpy here in case of TPU training
        eval_samples_idx = np.arange(num_eval_samples)
989
        eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
Suraj Patil's avatar
Suraj Patil committed
990
991
992
993
994
995
996

        eval_metrics = []
        for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples)

            # Model forward
997
998
999
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
            )
Suraj Patil's avatar
Suraj Patil committed
1000
1001
1002
1003
            eval_metrics.append(metrics)

        # get eval metrics
        eval_metrics = get_metrics(eval_metrics)
1004
        eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.mean(metric).item(), eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

        if jax.process_index() == 0:
            eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)


if __name__ == "__main__":
    main()