test_finetune_trainer.py 3.04 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
import os
import sys
from unittest.mock import patch

5
from transformers.testing_utils import TestCasePlus, slow
Sylvain Gugger's avatar
Sylvain Gugger committed
6
7
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
8
9
10
11
12

from .finetune_trainer import main
from .test_seq2seq_examples import MBART_TINY


13
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
14
15
16
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"


17
18
19
20
21
22
23
class TestFinetuneTrainer(TestCasePlus):
    def test_finetune_trainer(self):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
24

25
26
27
28
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
        output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=3)
Suraj Patil's avatar
Suraj Patil committed
29

30
31
32
33
34
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
35

36
37
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
38

39
40
41
42
43
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
        data_dir = "examples/seq2seq/test_data/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        argv = f"""
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --learning_rate 3e-4
            --warmup_steps 8
            --evaluate_during_training
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
79

80
81
82
        testargs = ["finetune_trainer.py"] + argv
        with patch.object(sys, "argv", testargs):
            main()
83

84
        return output_dir