"tests/models/cohere/test_modeling_cohere.py" did not exist on "63864e057fd4ecbf54c77599702873f7be871e65"
test_modeling_rag.py 43.6 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
import shutil
import tempfile
import unittest
from unittest.mock import patch

import numpy as np

26
from transformers import BartTokenizer, T5Tokenizer
Ola Piktus's avatar
Ola Piktus committed
27
from transformers.file_utils import cached_property, is_datasets_available, is_faiss_available, is_torch_available
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
Shamane Siri's avatar
Shamane Siri committed
29
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
30
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
Lysandre Debut's avatar
Lysandre Debut committed
31
32
33
34
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
35
    require_torch_non_multi_gpu,
Lysandre Debut's avatar
Lysandre Debut committed
36
37
38
    slow,
    torch_device,
)
Ola Piktus's avatar
Ola Piktus committed
39

40
from .test_modeling_bart import BartModelTester
Ola Piktus's avatar
Ola Piktus committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from .test_modeling_dpr import DPRModelTester
from .test_modeling_t5 import T5ModelTester


TOLERANCE = 1e-3

T5_SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")

if is_torch_available() and is_datasets_available() and is_faiss_available():
    import torch
    from datasets import Dataset

    import faiss
    from transformers import (
        AutoConfig,
        AutoModel,
        AutoModelForSeq2SeqLM,
Shamane Siri's avatar
Shamane Siri committed
58
        DPRContextEncoder,
Ola Piktus's avatar
Ola Piktus committed
59
60
61
62
63
        RagConfig,
        RagModel,
        RagRetriever,
        RagSequenceForGeneration,
        RagTokenForGeneration,
64
        RagTokenizer,
Ola Piktus's avatar
Ola Piktus committed
65
66
67
68
69
70
71
72
73
74
75
76
77
    )
    from transformers.modeling_outputs import BaseModelOutput


def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
78
        msg = f"{a} != {b}"
Ola Piktus's avatar
Ola Piktus committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def require_retrieval(test_case):
    """
    Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with
    :class:`~transformers.RagRetriever`.

    These tests are skipped when respective libraries are not installed.

    """
    if not (is_torch_available() and is_datasets_available() and is_faiss_available()):
93
        test_case = unittest.skip("test requires PyTorch, datasets and faiss")(test_case)
Ola Piktus's avatar
Ola Piktus committed
94
95
96
97
98
    return test_case


@require_torch
@require_retrieval
99
@require_sentencepiece
Ola Piktus's avatar
Ola Piktus committed
100
101
102
103
104
105
106
107
108
class RagTestMixin:

    all_model_classes = (
        (RagModel, RagTokenForGeneration, RagSequenceForGeneration)
        if is_torch_available() and is_datasets_available() and is_faiss_available()
        else ()
    )

    retrieval_vector_size = 32
109
    n_docs = 3
Ola Piktus's avatar
Ola Piktus committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    max_combined_length = 16

    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

        t5_tokenizer = T5Tokenizer(T5_SAMPLE_VOCAB)
        t5_tokenizer_path = os.path.join(self.tmpdirname, "t5_tokenizer")
        t5_tokenizer.save_pretrained(t5_tokenizer_path)

    @cached_property
    def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

Shamane Siri's avatar
Shamane Siri committed
183
184
185
186
    @cached_property
    def dpr_ctx_encoder_tokenizer(self) -> DPRContextEncoderTokenizer:
        return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

Ola Piktus's avatar
Ola Piktus committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    @cached_property
    def bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    @cached_property
    def t5_tokenizer(self) -> BartTokenizer:
        return T5Tokenizer.from_pretrained(os.path.join(self.tmpdirname, "t5_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def get_retriever(self, config):
        dataset = Dataset.from_dict(
            {
201
202
203
204
205
206
207
208
                "id": ["0", "1", "3"],
                "text": ["foo", "bar", "qux"],
                "title": ["Foo", "Bar", "Qux"],
                "embeddings": [
                    np.ones(self.retrieval_vector_size),
                    2 * np.ones(self.retrieval_vector_size),
                    3 * np.ones(self.retrieval_vector_size),
                ],
Ola Piktus's avatar
Ola Piktus committed
209
210
211
212
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
        tokenizer = self.bart_tokenizer if config.generator.model_type == "bart" else self.t5_tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
213
        with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
Ola Piktus's avatar
Ola Piktus committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
            mock_load_dataset.return_value = dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.dpr_tokenizer,
                generator_tokenizer=tokenizer,
            )
        return retriever

    def check_model_with_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

Shamane Siri's avatar
Shamane Siri committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def check_model_with_end2end_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        context_encoder_tokenizer = self.dpr_ctx_encoder_tokenizer
        dpr_context_encoder = DPRContextEncoder(config.question_encoder)  # dpr is a twin tower

        retriever = self.get_retriever(config)
        retriever.set_ctx_encoder_tokenizer(context_encoder_tokenizer)  # setting the ctx_encoder_tokenizer.

        for model_class in [RagTokenForGeneration, RagSequenceForGeneration]:
            model = model_class(config, retriever=retriever)
            model.set_context_encoder_for_training(dpr_context_encoder)  # set the context_encoder for training
            model.to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def check_model_generate_from_context_input_ids(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model.generate(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                do_deduplication=True,
            )

            self.assertIsNotNone(outputs)

Ola Piktus's avatar
Ola Piktus committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    def check_model_generate(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes[1:]:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model.generate(
                input_ids=input_ids,
                num_beams=2,
                num_return_sequences=2,
                decoder_start_token_id=config.generator.eos_token_id,
            )

            self.assertIsNotNone(outputs)

    def check_model_without_retriever(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def check_model_custom_n_docs(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, n_docs, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
                n_docs=n_docs,
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            outputs = model(
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                n_docs=n_docs,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], n_docs))

    def check_model_with_mismatch_n_docs_value(
        self,
        config,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask,
        retriever_n_docs,
        generator_n_docs,
        **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        retriever = self.get_retriever(config)

        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
            self.assertTrue(model.config.is_encoder_decoder)

            question_hidden_states = model.question_encoder(input_ids, attention_mask=attention_mask)[0]

            out = retriever(
                input_ids,
                question_hidden_states.cpu().detach().to(torch.float32).numpy(),
                prefix=config.generator.prefix,
                return_tensors="pt",
                n_docs=retriever_n_docs,
            )

            context_input_ids, context_attention_mask, retrieved_doc_embeds = (
                out["context_input_ids"],
                out["context_attention_mask"],
                out["retrieved_doc_embeds"],
            )

            # cast
            retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
            context_input_ids = context_input_ids.to(input_ids)
            context_attention_mask = context_attention_mask.to(input_ids)

            # compute doc_scores
            doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
                1
            )

            self.assertRaises(
                AssertionError,
                model.__call__,
                context_input_ids=context_input_ids,
                context_attention_mask=context_attention_mask,
                doc_scores=doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                n_docs=generator_n_docs,
            )

Ola Piktus's avatar
Ola Piktus committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    def check_model_with_encoder_outputs(
        self, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs
    ):
        self.assertIsNotNone(config.question_encoder)
        self.assertIsNotNone(config.generator)

        for model_class in self.all_model_classes:
            model = model_class(config, retriever=self.get_retriever(config)).to(torch_device)
            model.eval()

            self.assertTrue(model.config.is_encoder_decoder)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            encoder_outputs = BaseModelOutput(outputs.generator_enc_last_hidden_state)

            # run only generator
            outputs = model(
                encoder_outputs=encoder_outputs,
                doc_scores=outputs.doc_scores,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )

            # logits
            self.assertEqual(
                outputs.logits.shape,
                (self.n_docs * decoder_input_ids.shape[0], decoder_input_ids.shape[1], config.generator.vocab_size),
            )
            # generator encoder last hidden states
            self.assertEqual(
                outputs.generator_enc_last_hidden_state.shape,
                (self.n_docs * decoder_input_ids.shape[0], self.max_combined_length, config.generator.hidden_size),
            )
            # doc scores
            self.assertEqual(outputs.doc_scores.shape, (input_ids.shape[0], self.n_docs))

    def test_model_with_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_retriever(**inputs_dict)
Shamane Siri's avatar
Shamane Siri committed
585
586
587
588

    def test_model_with_end2end_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_end2end_retriever(**inputs_dict)
Ola Piktus's avatar
Ola Piktus committed
589
590
591
592
593
594
595
596
597
598
599
600
601

    def test_model_without_retriever(self):
        inputs_dict = self.config_and_inputs
        self.check_model_without_retriever(**inputs_dict)

    def test_model_with_encoder_outputs(self):
        inputs_dict = self.config_and_inputs
        self.check_model_with_encoder_outputs(**inputs_dict)

    def test_model_generate(self):
        inputs_dict = self.config_and_inputs
        self.check_model_generate(**inputs_dict)

602
603
604
605
606
607
608
609
610
611
612
    def test_model_with_custom_n_docs(self):
        inputs_dict = self.config_and_inputs
        inputs_dict["n_docs"] = 1
        self.check_model_custom_n_docs(**inputs_dict)

    def test_model_with_mismatch_n_docs_value(self):
        inputs_dict = self.config_and_inputs
        inputs_dict["retriever_n_docs"] = 3
        inputs_dict["generator_n_docs"] = 2
        self.check_model_with_mismatch_n_docs_value(**inputs_dict)

Ola Piktus's avatar
Ola Piktus committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

@require_torch
@require_retrieval
class RagDPRBartTest(RagTestMixin, unittest.TestCase):
    @cached_property
    def config_and_inputs(self):
        question_encoder_tester = DPRModelTester(self)
        dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs()
        generator_tester = BartModelTester(self)
        bart_config_and_inputs = generator_tester.prepare_config_and_inputs_for_common()

        (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs
        (generator_config, bart_inputs_dict) = bart_config_and_inputs
        decoder_input_ids, decoder_attention_mask = bart_inputs_dict["input_ids"], bart_inputs_dict["attention_mask"]

        config = RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            n_docs=self.n_docs,
            retrieval_vector_size=self.retrieval_vector_size,
            max_combined_length=self.max_combined_length,
        )

        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }


@require_torch
@require_retrieval
class RagDPRT5Test(RagTestMixin, unittest.TestCase):
    @cached_property
    def config_and_inputs(self):
        question_encoder_tester = DPRModelTester(self)
        dpr_config_and_inputs = question_encoder_tester.prepare_config_and_inputs()
652
        generator_tester = T5ModelTester(self, vocab_size=1100)
Ola Piktus's avatar
Ola Piktus committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        t5_config_and_inputs = generator_tester.prepare_config_and_inputs()

        (question_encoder_config, input_ids, _, input_mask, _, _, _) = dpr_config_and_inputs
        (generator_config, _, decoder_input_ids, _, decoder_attention_mask, _) = t5_config_and_inputs
        config = RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            n_docs=self.n_docs,
            retrieval_vector_size=self.retrieval_vector_size,
            max_combined_length=self.max_combined_length,
        )

        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }


@require_torch
@require_retrieval
676
677
@require_sentencepiece
@require_tokenizers
678
@require_torch_non_multi_gpu
Ola Piktus's avatar
Ola Piktus committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
class RagModelIntegrationTests(unittest.TestCase):
    @cached_property
    def sequence_model(self):
        return (
            RagSequenceForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn"
            )
            .to(torch_device)
            .eval()
        )

    @cached_property
    def token_model(self):
        return (
            RagTokenForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large-cnn"
            )
            .to(torch_device)
            .eval()
        )

    def get_rag_config(self):
        question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn")
        return RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            bos_token_id=0,
            decoder_start_token_id=2,
            eos_token_id=2,
            is_encoder_decoder=True,
            pad_token_id=1,
            vocab_size=50264,
            title_sep=" / ",
            doc_sep=" // ",
            n_docs=5,
            max_combined_length=300,
            dataset="wiki_dpr",
            dataset_split="train",
            index_name="exact",
            index_path=None,
            use_dummy_dataset=True,
            retrieval_vector_size=768,
            retrieval_batch_size=8,
        )

    @slow
    def test_rag_sequence_inference(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        rag_sequence = self.sequence_model
        rag_sequence.set_retriever(rag_retriever)

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with torch.no_grad():
            output = rag_sequence(
                input_ids,
                labels=decoder_input_ids,
            )

        expected_shape = torch.Size([5, 5, 50264])
        self.assertEqual(output.logits.shape, expected_shape)

        expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device)
        _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE)

761
        expected_loss = torch.tensor([36.7368]).to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
        _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE)

    @slow
    def test_rag_token_inference(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        rag_token = self.token_model
        rag_token.set_retriever(rag_retriever)

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with torch.no_grad():
            output = rag_token(
                input_ids,
                labels=decoder_input_ids,
            )

        expected_shape = torch.Size([5, 5, 50264])
        self.assertEqual(output.logits.shape, expected_shape)

        expected_doc_scores = torch.tensor([[75.0286, 74.4998, 74.0804, 74.0306, 73.9504]]).to(torch_device)
        _assert_tensors_equal(expected_doc_scores, output.doc_scores, atol=TOLERANCE)

800
        expected_loss = torch.tensor([36.3557]).to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
        _assert_tensors_equal(expected_loss, output.loss, atol=TOLERANCE)

    @slow
    def test_rag_token_generate_beam(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        rag_token = self.token_model
        rag_token.set_retriever(rag_retriever)

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids

        input_ids = input_ids.to(torch_device)

        output_ids = rag_token.generate(
            input_ids,
            decoder_start_token_id=rag_token.generator.config.decoder_start_token_id,
            num_beams=2,
            num_return_sequences=2,
        )
        # sequence generate test
        output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
        output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True)

        # Expected outputs as given by model at integration time.
836
837
        EXPECTED_OUTPUT_TEXT_1 = "\"She's My Kind of Girl"
        EXPECTED_OUTPUT_TEXT_2 = "\"She's My Kind of Love"
Ola Piktus's avatar
Ola Piktus committed
838
839
840
841
842

        self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1)
        self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2)

    @slow
843
    def test_rag_sequence_generate_beam(self):
Ola Piktus's avatar
Ola Piktus committed
844
845
846
847
848
849
850
851
852
853
854
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

855
856
        rag_sequence = self.sequence_model
        rag_sequence.set_retriever(rag_retriever)
Ola Piktus's avatar
Ola Piktus committed
857

858
859
860
        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
Ola Piktus's avatar
Ola Piktus committed
861

862
        input_ids = input_ids.to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
863

864
        output_ids = rag_sequence.generate(
Ola Piktus's avatar
Ola Piktus committed
865
            input_ids,
866
            decoder_start_token_id=rag_sequence.generator.config.decoder_start_token_id,
867
868
            num_beams=2,
            num_return_sequences=2,
Ola Piktus's avatar
Ola Piktus committed
869
870
871
872
873
874
        )
        # sequence generate test
        output_text_1 = rag_decoder_tokenizer.decode(output_ids[0], skip_special_tokens=True)
        output_text_2 = rag_decoder_tokenizer.decode(output_ids[1], skip_special_tokens=True)

        # Expected outputs as given by model at integration time.
875
876
        EXPECTED_OUTPUT_TEXT_1 = """\"She's My Kind of Girl\" was released through Epic Records in Japan in March 1972, giving the duo a Top 10 hit. Two more singles were released in Japan, \"En Carousel\" and \"Love Has Its Ways\" Ulvaeus and Andersson persevered with their songwriting and experimented with new sounds and vocal arrangements."""
        EXPECTED_OUTPUT_TEXT_2 = """In September 2018, Bj枚rn Ulvaeus revealed that the two new songs, \"I Still Have Faith In You\" and \"Don't Shut Me Down\", would be released no earlier than March 2019. The two new tracks will feature in a TV special set to air later in the year."""
Ola Piktus's avatar
Ola Piktus committed
877
878
879

        self.assertEqual(output_text_1, EXPECTED_OUTPUT_TEXT_1)
        self.assertEqual(output_text_2, EXPECTED_OUTPUT_TEXT_2)
880
881
882
883
884
885
886
887
888
889
890
891
892

    @property
    def test_data_questions(self):
        return [
            "who got the first nobel prize in physics",
            "when is the next deadpool movie being released",
            "which mode is used for short wave broadcast service",
            "who is the owner of reading football club",
            "when is the next scandal episode coming out",
            "when is the last time the philadelphia won the superbowl",
            "what is the most current adobe flash player version",
            "how many episodes are there in dragon ball z",
        ]
Ola Piktus's avatar
Ola Piktus committed
893
894
895

    @slow
    def test_rag_sequence_generate_batch(self):
896
897
898
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
        retriever = RagRetriever.from_pretrained(
            "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
Ola Piktus's avatar
Ola Piktus committed
899
        )
900
        rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to(
901
            torch_device
Ola Piktus's avatar
Ola Piktus committed
902
903
        )

904
905
        input_dict = tokenizer(
            self.test_data_questions,
Ola Piktus's avatar
Ola Piktus committed
906
907
908
            return_tensors="pt",
            padding=True,
            truncation=True,
909
        )
Ola Piktus's avatar
Ola Piktus committed
910

911
912
        input_ids = input_dict.input_ids.to(torch_device)
        attention_mask = input_dict.attention_mask.to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
913
914
915

        output_ids = rag_sequence.generate(
            input_ids,
916
            attention_mask=attention_mask,
Ola Piktus's avatar
Ola Piktus committed
917
918
        )

919
920
921
922
923
924
925
926
927
928
929
930
931
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        EXPECTED_OUTPUTS = [
            " albert einstein",
            " june 22, 2018",
            " amplitude modulation",
            " tim besley ( chairman )",
            " june 20, 2018",
            " 1980",
            " 7.0",
            " 8",
        ]
        self.assertListEqual(outputs, EXPECTED_OUTPUTS)
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

    @slow
    def test_rag_sequence_generate_batch_from_context_input_ids(self):
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
        retriever = RagRetriever.from_pretrained(
            "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
        )
        rag_sequence = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever).to(
            torch_device
        )

        input_dict = tokenizer(
            self.test_data_questions,
            return_tensors="pt",
            padding=True,
            truncation=True,
        )

        input_ids = input_dict.input_ids.to(torch_device)
        attention_mask = input_dict.attention_mask.to(torch_device)

        question_hidden_states = rag_sequence.question_encoder(input_ids, attention_mask=attention_mask)[0]
        docs_dict = retriever(
            input_ids.cpu().detach().numpy(), question_hidden_states.cpu().detach().numpy(), return_tensors="pt"
        )
        doc_scores = torch.bmm(
            question_hidden_states.unsqueeze(1),
            docs_dict["retrieved_doc_embeds"].to(torch_device).float().transpose(1, 2),
        ).squeeze(1)

        output_ids = rag_sequence.generate(
            context_input_ids=docs_dict["context_input_ids"].to(torch_device),
            context_attention_mask=docs_dict["context_attention_mask"].to(torch_device),
            doc_scores=doc_scores.to(torch_device),
            do_deduplication=True,
        )

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        EXPECTED_OUTPUTS = [
            " albert einstein",
            " june 22, 2018",
            " amplitude modulation",
            " tim besley ( chairman )",
            " june 20, 2018",
            " 1980",
            " 7.0",
            " 8",
        ]
        self.assertListEqual(outputs, EXPECTED_OUTPUTS)
Ola Piktus's avatar
Ola Piktus committed
982
983

    @slow
984
985
986
987
988
    def test_rag_token_generate_batch(self):
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
        retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
        rag_token = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever).to(
            torch_device
Ola Piktus's avatar
Ola Piktus committed
989
990
        )

991
992
993
994
995
996
        input_dict = tokenizer(
            self.test_data_questions,
            return_tensors="pt",
            padding=True,
            truncation=True,
        )
Ola Piktus's avatar
Ola Piktus committed
997

998
999
        input_ids = input_dict.input_ids.to(torch_device)
        attention_mask = input_dict.attention_mask.to(torch_device)
Ola Piktus's avatar
Ola Piktus committed
1000
1001
1002

        output_ids = rag_token.generate(
            input_ids,
1003
            attention_mask=attention_mask,
Ola Piktus's avatar
Ola Piktus committed
1004
1005
        )

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        EXPECTED_OUTPUTS = [
            " albert einstein",
            " september 22, 2017",
            " amplitude modulation",
            " stefan persson",
            " april 20, 2018",
            " the 1970s",
            " 7.1. 2",
            " 13",
        ]
        self.assertListEqual(outputs, EXPECTED_OUTPUTS)
Ola Piktus's avatar
Ola Piktus committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165


@require_torch
@require_retrieval
class RagModelSaveLoadTests(unittest.TestCase):
    def get_rag_config(self):
        question_encoder_config = AutoConfig.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator_config = AutoConfig.from_pretrained("facebook/bart-large-cnn")
        return RagConfig.from_question_encoder_generator_configs(
            question_encoder_config,
            generator_config,
            bos_token_id=0,
            decoder_start_token_id=2,
            eos_token_id=2,
            is_encoder_decoder=True,
            pad_token_id=1,
            vocab_size=50264,
            title_sep=" / ",
            doc_sep=" // ",
            n_docs=5,
            max_combined_length=300,
            dataset="wiki_dpr",
            dataset_split="train",
            index_name="exact",
            index_path=None,
            use_dummy_dataset=True,
            retrieval_vector_size=768,
            retrieval_batch_size=8,
        )

    @slow
    def test_rag_sequence_from_pretrained(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            rag_sequence = RagSequenceForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base",
                "facebook/bart-large-cnn",
                retriever=rag_retriever,
                config=rag_config,
            ).to(torch_device)
            # check that the from pretrained methods work
            rag_sequence.save_pretrained(tmp_dirname)
            rag_sequence.from_pretrained(tmp_dirname, retriever=rag_retriever)
            rag_sequence.to(torch_device)

            with torch.no_grad():
                output = rag_sequence(
                    input_ids,
                    labels=decoder_input_ids,
                )

            loss_pretrained = output.loss
            del rag_sequence

        question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
        rag_sequence = RagSequenceForGeneration(
            config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever
        )
        rag_sequence.to(torch_device)

        with torch.no_grad():
            output = rag_sequence(
                input_ids,
                labels=decoder_input_ids,
            )

        loss_init = output.loss

        self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)

    @slow
    def test_rag_token_from_pretrained(self):
        rag_config = self.get_rag_config()
        rag_decoder_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        rag_question_encoder_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
            "facebook/dpr-question_encoder-single-nq-base"
        )
        rag_retriever = RagRetriever(
            rag_config,
            question_encoder_tokenizer=rag_question_encoder_tokenizer,
            generator_tokenizer=rag_decoder_tokenizer,
        )

        input_ids = rag_question_encoder_tokenizer(
            "who sings does he love me with reba", return_tensors="pt"
        ).input_ids
        decoder_input_ids = rag_decoder_tokenizer("Linda Davis", return_tensors="pt").input_ids

        input_ids = input_ids.to(torch_device)
        decoder_input_ids = decoder_input_ids.to(torch_device)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            rag_token = RagTokenForGeneration.from_pretrained_question_encoder_generator(
                "facebook/dpr-question_encoder-single-nq-base",
                "facebook/bart-large-cnn",
                retriever=rag_retriever,
                config=rag_config,
            ).to(torch_device)
            # check that the from pretrained methods work
            rag_token.save_pretrained(tmp_dirname)
            rag_token.from_pretrained(tmp_dirname, retriever=rag_retriever)
            rag_token.to(torch_device)

            with torch.no_grad():
                output = rag_token(
                    input_ids,
                    labels=decoder_input_ids,
                )

            loss_pretrained = output.loss
            del rag_token

        question_encoder = AutoModel.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
        generator = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
        rag_token = RagTokenForGeneration(
            config=rag_config, question_encoder=question_encoder, generator=generator, retriever=rag_retriever
        )
        rag_token.to(torch_device)

        with torch.no_grad():
            output = rag_token(
                input_ids,
                labels=decoder_input_ids,
            )

        loss_init = output.loss

        self.assertAlmostEqual(loss_pretrained.item(), loss_init.item(), places=4)