test_modeling_albert.py 11.5 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Lysandre's avatar
Lysandre committed
19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre's avatar
Lysandre committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre's avatar
Lysandre committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25

Lysandre's avatar
Lysandre committed
26
if is_torch_available():
27
28
    import torch

29
    from transformers import (
30
        MODEL_FOR_PRETRAINING_MAPPING,
31
32
        AlbertConfig,
        AlbertForMaskedLM,
33
        AlbertForMultipleChoice,
34
35
        AlbertForPreTraining,
        AlbertForQuestionAnswering,
36
        AlbertForSequenceClassification,
37
        AlbertForTokenClassification,
38
        AlbertModel,
39
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
41
42


43
44
class AlbertModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
45
46
        self,
        parent,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.embedding_size = 16
        self.hidden_size = 36
        self.num_hidden_layers = 6
        self.num_hidden_groups = 6
        self.num_attention_heads = 6
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
78
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = AlbertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            num_hidden_groups=self.num_hidden_groups,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_albert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
117
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
118
119
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
120
121
122
123
124
125
126

    def create_and_check_albert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
127
        result = model(
128
129
130
131
132
133
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=token_labels,
            sentence_order_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
134
135
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels))
136
137
138
139
140
141
142

    def create_and_check_albert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
143
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
144
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
145
146
147
148
149
150
151

    def create_and_check_albert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
152
        result = model(
153
154
155
156
157
158
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
159
160
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
161
162
163
164
165
166
167
168

    def create_and_check_albert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = AlbertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
169
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
170
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
171
172
173
174
175
176
177
178

    def create_and_check_albert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = AlbertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
179
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
180
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
181
182
183
184
185
186
187
188
189
190
191

    def create_and_check_albert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = AlbertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
192
        result = model(
193
194
195
196
197
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
198
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


215
@require_torch
216
class AlbertModelTest(ModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
217

218
219
220
221
222
223
224
225
226
227
228
229
230
    all_model_classes = (
        (
            AlbertModel,
            AlbertForPreTraining,
            AlbertForMaskedLM,
            AlbertForMultipleChoice,
            AlbertForSequenceClassification,
            AlbertForTokenClassification,
            AlbertForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
Lysandre's avatar
Lysandre committed
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class in MODEL_FOR_PRETRAINING_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["sentence_order_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

Lysandre's avatar
Lysandre committed
246
    def setUp(self):
247
        self.model_tester = AlbertModelTester(self)
Lysandre's avatar
Lysandre committed
248
249
250
251
252
253
254
255
256
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

257
258
259
260
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs)

Lysandre's avatar
Lysandre committed
261
262
263
264
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)

265
266
267
268
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs)

269
270
271
272
273
274
275
276
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)

277
    @slow
Lysandre's avatar
Lysandre committed
278
    def test_model_from_pretrained(self):
279
        for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
280
            model = AlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
281
            self.assertIsNotNone(model)