check_task_guides.py 5.57 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import importlib.util
import os
19
import sys
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
TRANSFORMERS_PATH = "src/transformers"
PATH_TO_TASK_GUIDES = "docs/source/en/tasks"


def _find_text_in_file(filename, start_prompt, end_prompt):
    """
    Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty
    lines.
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
    # Find the start prompt.
    start_index = 0
    while not lines[start_index].startswith(start_prompt):
        start_index += 1
    start_index += 1

    end_index = start_index
    while not lines[end_index].startswith(end_prompt):
        end_index += 1
    end_index -= 1

    while len(lines[start_index]) <= 1:
        start_index += 1
    while len(lines[end_index]) <= 1:
        end_index -= 1
    end_index += 1
    return "".join(lines[start_index:end_index]), start_index, end_index, lines


# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(TRANSFORMERS_PATH, "__init__.py"),
    submodule_search_locations=[TRANSFORMERS_PATH],
)
60
61
62
transformers_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(transformers_module)
transformers_module = sys.modules["transformers"]
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

TASK_GUIDE_TO_MODELS = {
    "asr.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
    "audio_classification.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    "language_modeling.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    "image_classification.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    "masked_language_modeling.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    "multiple_choice.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    "object_detection.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    "question_answering.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    "semantic_segmentation.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    "sequence_classification.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    "summarization.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    "token_classification.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    "translation.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    "video_classification.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
79
    "document_question_answering.mdx": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
}


def get_model_list_for_task(task_guide):
    """
    Return the list of models supporting given task.
    """
    config_maping_names = TASK_GUIDE_TO_MODELS[task_guide]
    model_names = {
        code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names
    }
    return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()]) + "\n"


def check_model_list_for_task(task_guide, overwrite=False):
    """For a given task guide, checks the model list in the generated tip for consistency with the state of the lib and overwrites if needed."""

    current_list, start_index, end_index, lines = _find_text_in_file(
        filename=os.path.join(PATH_TO_TASK_GUIDES, task_guide),
        start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->",
        end_prompt="<!--End of the generated tip-->",
    )

    new_list = get_model_list_for_task(task_guide)

    if current_list != new_list:
        if overwrite:
            with open(os.path.join(PATH_TO_TASK_GUIDES, task_guide), "w", encoding="utf-8", newline="\n") as f:
                f.writelines(lines[:start_index] + [new_list] + lines[end_index:])
        else:
            raise ValueError(
                f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
                " to fix this."
            )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
    args = parser.parse_args()

    for task_guide in TASK_GUIDE_TO_MODELS.keys():
        check_model_list_for_task(task_guide, args.fix_and_overwrite)