README.md 3.07 KB
Newer Older
1
2

---
3
4
5
language: 
- en
- de
6
7
8
9
thumbnail:
tags:
- translation
- wmt19
10
- facebook
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
license: Apache 2.0
datasets:
- http://www.statmt.org/wmt19/ ([test-set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561))
metrics:
- http://www.statmt.org/wmt19/metrics-task.html
---

# FSMT

## Model description

This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for en-de.

For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).

The abbreviation FSMT stands for FairSeqMachineTranslation

All four models are available:

* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)

## Intended uses & limitations

#### How to use

```python
from transformers.tokenization_fsmt import FSMTTokenizer
from transformers.modeling_fsmt import FSMTForConditionalGeneration
mname = "facebook/wmt19-en-de"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

input = "Machine learning is great, isn't it?"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # Maschinelles Lernen ist gro脽artig, oder?

```

#### Limitations and bias

- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)

## Training data

Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).

## Eval results

pair   | fairseq | transformers
-------|---------|----------
en-de  | [43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862) | 42.83

The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking

The score was calculated using this code:

```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.


## TODO

- port model ensemble (fairseq uses 4 model checkpoints)