test_tokenization_xlm_roberta.py 6.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import os
18
19
import unittest

20
from transformers.file_utils import cached_property
21
from transformers.tokenization_xlm_roberta import SPIECE_UNDERLINE, XLMRobertaTokenizer
22

23
from .test_tokenization_common import TokenizerTesterMixin
24
25
26
from .utils import slow


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


class XLMRobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = XLMRobertaTokenizer

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = XLMRobertaTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = XLMRobertaTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
                #                                       ^ unk: 2 + 1 = 3                  unk: 2 + 1 = 3 ^
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

117
118
119
120
    @cached_property
    def big_tokenizer(self):
        return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base")

121
122
123
124
125
126
127
128
    @slow
    def test_tokenization_base_easy_symbols(self):
        symbols = "Hello World!"
        original_tokenizer_encodings = [0, 35378, 6661, 38, 2]
        # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')  # xlmr.large has same tokenizer
        # xlmr.eval()
        # xlmr.encode(symbols)

129
        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    @slow
    def test_tokenization_base_hard_symbols(self):
        symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
        original_tokenizer_encodings = [
            0,
            3293,
            83,
            10,
            4552,
            4989,
            7986,
            678,
            10,
            5915,
            111,
            179459,
            124850,
            4,
            6044,
            237,
            12,
            6,
            5,
            6,
            4,
            6780,
            705,
            15,
            1388,
            44,
            378,
            10114,
            711,
            152,
            20,
            6,
            5,
            22376,
            642,
            1221,
            15190,
            34153,
            450,
            5608,
            959,
            1119,
            57702,
            136,
            186,
            47,
            1098,
            29367,
            47,
184
185
186
187
188
            # 4426, # What fairseq tokenizes from "<unk>": "_<"
            # 3678, # What fairseq tokenizes from "<unk>": "unk"
            # 2740, # What fairseq tokenizes from "<unk>": ">"
            3,  # What we tokenize from "<unk>": "<unk>"
            6,  # Residue from the tokenization: an extra sentencepiece underline
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            4,
            6044,
            237,
            6284,
            50901,
            528,
            31,
            90,
            34,
            927,
            2,
        ]
        # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')  # xlmr.large has same tokenizer
        # xlmr.eval()
        # xlmr.encode(symbols)

205
        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))