"vscode:/vscode.git/clone" did not exist on "be5472a9edae6e097e519044d938c7f105b73bfd"
test_pipelines_table_question_answering.py 29.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
19
20
21
from transformers import (
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
    AutoModelForTableQuestionAnswering,
    AutoTokenizer,
    TableQuestionAnsweringPipeline,
Kamal Raj's avatar
Kamal Raj committed
22
    TFAutoModelForTableQuestionAnswering,
23
24
25
26
    pipeline,
)
from transformers.testing_utils import (
    require_pandas,
Kamal Raj's avatar
Kamal Raj committed
27
    require_tensorflow_probability,
28
29
30
31
32
    require_tf,
    require_torch,
    require_torch_scatter,
    slow,
)
33

34
from .test_pipelines_common import PipelineTestCaseMeta
35
36


37
38
39
40
41
class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    # Putting it there for consistency, but TQA do not have fast tokenizer
    # which are needed to generate automatic tests
    model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING

42
43
    @require_tensorflow_probability
    @require_pandas
44
    @require_tf
45
    @require_torch
46
    def test_small_model_tf(self):
Kamal Raj's avatar
Kamal Raj committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        model_id = "lysandre/tiny-tapas-random-wtq"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        self.assertIsInstance(model.config.aggregation_labels, dict)
        self.assertIsInstance(model.config.no_aggregation_label_index, int)

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
        )
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
Kamal Raj's avatar
Kamal Raj committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
146
147

    @require_torch
148
    @require_torch_scatter
149
150
151
152
153
154
155
156
157
158
    def test_small_model_pt(self):
        model_id = "lysandre/tiny-tapas-random-wtq"
        model = AutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        self.assertIsInstance(model.config.aggregation_labels, dict)
        self.assertIsInstance(model.config.no_aggregation_label_index, int)

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
159
160
161
162
163
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
164
165
166
167
168
169
170
171
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
        )
        outputs = table_querier(
            table={
172
173
174
175
176
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
177
178
179
180
181
182
183
184
185
186
187
188
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )
        outputs = table_querier(
            table={
189
190
191
192
193
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
194
            query=[
195
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
198
199
200
201
202
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
203
204
205
206
207
208
209
210
211
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
212
213
        )

214
        with self.assertRaises(ValueError):
215
216
217
218
219
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
220
221
        with self.assertRaises(ValueError):
            table_querier(
222
223
224
225
226
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
227
228
229
230
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
231
232
233
234
235
236
237
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
238
239
240
            )
        with self.assertRaises(ValueError):
            table_querier(
241
242
243
244
245
246
247
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
248
249
            )

Kamal Raj's avatar
Kamal Raj committed
250
    @require_torch
251
    @require_torch_scatter
Kamal Raj's avatar
Kamal Raj committed
252
    def test_slow_tokenizer_sqa_pt(self):
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        model_id = "lysandre/tiny-tapas-random-sqa"
        model = AutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)

        inputs = {
            "table": {
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            "query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        }
        sequential_outputs = table_querier(**inputs, sequential=True)
        batch_outputs = table_querier(**inputs, sequential=False)

        self.assertEqual(len(sequential_outputs), 3)
        self.assertEqual(len(batch_outputs), 3)
        self.assertEqual(sequential_outputs[0], batch_outputs[0])
        self.assertNotEqual(sequential_outputs[1], batch_outputs[1])
        # self.assertNotEqual(sequential_outputs[2], batch_outputs[2])

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
285
        )
286
287
288
        self.assertEqual(
            outputs,
            {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
289
        )
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
316
317
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
369

Kamal Raj's avatar
Kamal Raj committed
370
    @require_tf
371
372
373
    @require_tensorflow_probability
    @require_pandas
    @require_torch
Kamal Raj's avatar
Kamal Raj committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    def test_slow_tokenizer_sqa_tf(self):
        model_id = "lysandre/tiny-tapas-random-sqa"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)

        inputs = {
            "table": {
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            "query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        }
        sequential_outputs = table_querier(**inputs, sequential=True)
        batch_outputs = table_querier(**inputs, sequential=False)

        self.assertEqual(len(sequential_outputs), 3)
        self.assertEqual(len(batch_outputs), 3)
        self.assertEqual(sequential_outputs[0], batch_outputs[0])
        self.assertNotEqual(sequential_outputs[1], batch_outputs[1])
        # self.assertNotEqual(sequential_outputs[2], batch_outputs[2])

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
        )
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
438
439
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
Kamal Raj's avatar
Kamal Raj committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )

492
    @slow
493
    @require_torch_scatter
Kamal Raj's avatar
Kamal Raj committed
494
    def test_integration_wtq_pt(self):
495
        table_querier = pipeline("table-question-answering")
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

        data = {
            "Repository": ["Transformers", "Datasets", "Tokenizers"],
            "Stars": ["36542", "4512", "3934"],
            "Contributors": ["651", "77", "34"],
            "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
        }
        queries = [
            "What repository has the largest number of stars?",
            "Given that the numbers of stars defines if a repository is active, what repository is the most active?",
            "What is the number of repositories?",
            "What is the average number of stars?",
            "What is the total amount of stars?",
        ]

511
        results = table_querier(data, queries)
512
513

        expected_results = [
514
515
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
516
            {
517
                "answer": "COUNT > Transformers, Datasets, Tokenizers",
518
519
                "coordinates": [(0, 0), (1, 0), (2, 0)],
                "cells": ["Transformers", "Datasets", "Tokenizers"],
520
                "aggregator": "COUNT",
521
522
            },
            {
523
                "answer": "AVERAGE > 36542, 4512, 3934",
524
525
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
526
                "aggregator": "AVERAGE",
527
528
            },
            {
529
                "answer": "SUM > 36542, 4512, 3934",
530
531
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
532
                "aggregator": "SUM",
533
534
535
536
537
            },
        ]
        self.assertListEqual(results, expected_results)

    @slow
538
539
    @require_tensorflow_probability
    @require_pandas
Kamal Raj's avatar
Kamal Raj committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    def test_integration_wtq_tf(self):
        model_id = "google/tapas-base-finetuned-wtq"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = pipeline("table-question-answering", model=model, tokenizer=tokenizer)

        data = {
            "Repository": ["Transformers", "Datasets", "Tokenizers"],
            "Stars": ["36542", "4512", "3934"],
            "Contributors": ["651", "77", "34"],
            "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
        }
        queries = [
            "What repository has the largest number of stars?",
            "Given that the numbers of stars defines if a repository is active, what repository is the most active?",
            "What is the number of repositories?",
            "What is the average number of stars?",
            "What is the total amount of stars?",
        ]

        results = table_querier(data, queries)

        expected_results = [
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {
                "answer": "COUNT > Transformers, Datasets, Tokenizers",
                "coordinates": [(0, 0), (1, 0), (2, 0)],
                "cells": ["Transformers", "Datasets", "Tokenizers"],
                "aggregator": "COUNT",
            },
            {
                "answer": "AVERAGE > 36542, 4512, 3934",
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
                "aggregator": "AVERAGE",
            },
            {
                "answer": "SUM > 36542, 4512, 3934",
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
                "aggregator": "SUM",
            },
        ]
        self.assertListEqual(results, expected_results)

    @slow
587
    @require_torch_scatter
Kamal Raj's avatar
Kamal Raj committed
588
    def test_integration_sqa_pt(self):
589
        table_querier = pipeline(
590
            "table-question-answering",
591
592
            model="google/tapas-base-finetuned-sqa",
            tokenizer="google/tapas-base-finetuned-sqa",
593
594
595
596
597
598
599
600
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
601
        results = table_querier(data, queries, sequential=True)
602
603
604
605
606
607
608

        expected_results = [
            {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
            {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
            {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
        ]
        self.assertListEqual(results, expected_results)
Kamal Raj's avatar
Kamal Raj committed
609
610

    @slow
611
612
    @require_tensorflow_probability
    @require_pandas
Kamal Raj's avatar
Kamal Raj committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    def test_integration_sqa_tf(self):
        model_id = "google/tapas-base-finetuned-sqa"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = pipeline(
            "table-question-answering",
            model=model,
            tokenizer=tokenizer,
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
        results = table_querier(data, queries, sequential=True)

        expected_results = [
            {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
            {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
            {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
        ]
        self.assertListEqual(results, expected_results)
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

    @slow
    @require_torch
    def test_large_model_pt_tapex(self):
        model_id = "microsoft/tapex-large-finetuned-wtq"
        table_querier = pipeline(
            "table-question-answering",
            model=model_id,
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = [
            "How many movies has George Clooney played in?",
            "How old is Mr Clooney ?",
            "What's the date of birth of Leonardo ?",
        ]
        results = table_querier(data, queries, sequential=True)

        expected_results = [
            {"answer": " 69"},
            {"answer": " 59"},
            {"answer": " 10 june 1996"},
        ]
        self.assertListEqual(results, expected_results)