"tests/vscode:/vscode.git/clone" did not exist on "3c92fa93b54befffb1f908ba7cd745a1527468a4"
utils_qa.py 21.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Post-processing utilities for question answering.
"""
import collections
import json
import logging
import os
from typing import Optional, Tuple

import numpy as np
from tqdm.auto import tqdm


logger = logging.getLogger(__name__)


def postprocess_qa_predictions(
    examples,
    features,
    predictions: Tuple[np.ndarray, np.ndarray],
    version_2_with_negative: bool = False,
    n_best_size: int = 20,
    max_answer_length: int = 30,
    null_score_diff_threshold: float = 0.0,
    output_dir: Optional[str] = None,
    prefix: Optional[str] = None,
41
    log_level: Optional[int] = logging.WARNING,
Sylvain Gugger's avatar
Sylvain Gugger committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
):
    """
    Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the
    original contexts. This is the base postprocessing functions for models that only return start and end logits.

    Args:
        examples: The non-preprocessed dataset (see the main script for more information).
        features: The processed dataset (see the main script for more information).
        predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
            The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
            first dimension must match the number of elements of :obj:`features`.
        version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the underlying dataset contains examples with no answers.
        n_best_size (:obj:`int`, `optional`, defaults to 20):
            The total number of n-best predictions to generate when looking for an answer.
        max_answer_length (:obj:`int`, `optional`, defaults to 30):
            The maximum length of an answer that can be generated. This is needed because the start and end predictions
            are not conditioned on one another.
        null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0):
            The threshold used to select the null answer: if the best answer has a score that is less than the score of
            the null answer minus this threshold, the null answer is selected for this example (note that the score of
            the null answer for an example giving several features is the minimum of the scores for the null answer on
            each feature: all features must be aligned on the fact they `want` to predict a null answer).

            Only useful when :obj:`version_2_with_negative` is :obj:`True`.
        output_dir (:obj:`str`, `optional`):
            If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
            :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
            answers, are saved in `output_dir`.
        prefix (:obj:`str`, `optional`):
            If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
73
74
        log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
            ``logging`` log level (e.g., ``logging.WARNING``)
Sylvain Gugger's avatar
Sylvain Gugger committed
75
76
77
78
    """
    assert len(predictions) == 2, "`predictions` should be a tuple with two elements (start_logits, end_logits)."
    all_start_logits, all_end_logits = predictions

79
    assert len(predictions[0]) == len(features), f"Got {len(predictions[0])} predictions and {len(features)} features."
Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    # Build a map example to its corresponding features.
    example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
    features_per_example = collections.defaultdict(list)
    for i, feature in enumerate(features):
        features_per_example[example_id_to_index[feature["example_id"]]].append(i)

    # The dictionaries we have to fill.
    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    if version_2_with_negative:
        scores_diff_json = collections.OrderedDict()

    # Logging.
94
    logger.setLevel(log_level)
Sylvain Gugger's avatar
Sylvain Gugger committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")

    # Let's loop over all the examples!
    for example_index, example in enumerate(tqdm(examples)):
        # Those are the indices of the features associated to the current example.
        feature_indices = features_per_example[example_index]

        min_null_prediction = None
        prelim_predictions = []

        # Looping through all the features associated to the current example.
        for feature_index in feature_indices:
            # We grab the predictions of the model for this feature.
            start_logits = all_start_logits[feature_index]
            end_logits = all_end_logits[feature_index]
            # This is what will allow us to map some the positions in our logits to span of texts in the original
            # context.
            offset_mapping = features[feature_index]["offset_mapping"]
            # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
            # available in the current feature.
            token_is_max_context = features[feature_index].get("token_is_max_context", None)

            # Update minimum null prediction.
            feature_null_score = start_logits[0] + end_logits[0]
119
            if min_null_prediction is None or min_null_prediction["score"] > feature_null_score:
Sylvain Gugger's avatar
Sylvain Gugger committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
                min_null_prediction = {
                    "offsets": (0, 0),
                    "score": feature_null_score,
                    "start_logit": start_logits[0],
                    "end_logit": end_logits[0],
                }

            # Go through all possibilities for the `n_best_size` greater start and end logits.
            start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
            end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
                    # to part of the input_ids that are not in the context.
                    if (
                        start_index >= len(offset_mapping)
                        or end_index >= len(offset_mapping)
                        or offset_mapping[start_index] is None
                        or offset_mapping[end_index] is None
                    ):
                        continue
                    # Don't consider answers with a length that is either < 0 or > max_answer_length.
                    if end_index < start_index or end_index - start_index + 1 > max_answer_length:
                        continue
                    # Don't consider answer that don't have the maximum context available (if such information is
                    # provided).
                    if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
                        continue
                    prelim_predictions.append(
                        {
                            "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
                            "score": start_logits[start_index] + end_logits[end_index],
                            "start_logit": start_logits[start_index],
                            "end_logit": end_logits[end_index],
                        }
                    )
        if version_2_with_negative:
            # Add the minimum null prediction
            prelim_predictions.append(min_null_prediction)
            null_score = min_null_prediction["score"]

        # Only keep the best `n_best_size` predictions.
        predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]

        # Add back the minimum null prediction if it was removed because of its low score.
        if version_2_with_negative and not any(p["offsets"] == (0, 0) for p in predictions):
            predictions.append(min_null_prediction)

        # Use the offsets to gather the answer text in the original context.
        context = example["context"]
        for pred in predictions:
            offsets = pred.pop("offsets")
            pred["text"] = context[offsets[0] : offsets[1]]

        # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
        # failure.
        if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
            predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})

        # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
        # the LogSumExp trick).
        scores = np.array([pred.pop("score") for pred in predictions])
        exp_scores = np.exp(scores - np.max(scores))
        probs = exp_scores / exp_scores.sum()

        # Include the probabilities in our predictions.
        for prob, pred in zip(probs, predictions):
            pred["probability"] = prob

        # Pick the best prediction. If the null answer is not possible, this is easy.
        if not version_2_with_negative:
            all_predictions[example["id"]] = predictions[0]["text"]
        else:
            # Otherwise we first need to find the best non-empty prediction.
            i = 0
            while predictions[i]["text"] == "":
                i += 1
            best_non_null_pred = predictions[i]

            # Then we compare to the null prediction using the threshold.
            score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
            scores_diff_json[example["id"]] = float(score_diff)  # To be JSON-serializable.
            if score_diff > null_score_diff_threshold:
                all_predictions[example["id"]] = ""
            else:
                all_predictions[example["id"]] = best_non_null_pred["text"]

        # Make `predictions` JSON-serializable by casting np.float back to float.
        all_nbest_json[example["id"]] = [
209
            {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
213
214
215
216
217
            for pred in predictions
        ]

    # If we have an output_dir, let's save all those dicts.
    if output_dir is not None:
        assert os.path.isdir(output_dir), f"{output_dir} is not a directory."

        prediction_file = os.path.join(
218
            output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
        )
        nbest_file = os.path.join(
221
            output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
        )
        if version_2_with_negative:
            null_odds_file = os.path.join(
Bhadresh Savani's avatar
Bhadresh Savani committed
225
                output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
Sylvain Gugger's avatar
Sylvain Gugger committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
            )

        logger.info(f"Saving predictions to {prediction_file}.")
        with open(prediction_file, "w") as writer:
            writer.write(json.dumps(all_predictions, indent=4) + "\n")
        logger.info(f"Saving nbest_preds to {nbest_file}.")
        with open(nbest_file, "w") as writer:
            writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
        if version_2_with_negative:
            logger.info(f"Saving null_odds to {null_odds_file}.")
            with open(null_odds_file, "w") as writer:
                writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

    return all_predictions


def postprocess_qa_predictions_with_beam_search(
    examples,
    features,
    predictions: Tuple[np.ndarray, np.ndarray],
    version_2_with_negative: bool = False,
    n_best_size: int = 20,
    max_answer_length: int = 30,
    start_n_top: int = 5,
    end_n_top: int = 5,
    output_dir: Optional[str] = None,
    prefix: Optional[str] = None,
253
    log_level: Optional[int] = logging.WARNING,
Sylvain Gugger's avatar
Sylvain Gugger committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
):
    """
    Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the
    original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as
    cls token predictions.

    Args:
        examples: The non-preprocessed dataset (see the main script for more information).
        features: The processed dataset (see the main script for more information).
        predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
            The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
            first dimension must match the number of elements of :obj:`features`.
        version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the underlying dataset contains examples with no answers.
        n_best_size (:obj:`int`, `optional`, defaults to 20):
            The total number of n-best predictions to generate when looking for an answer.
        max_answer_length (:obj:`int`, `optional`, defaults to 30):
            The maximum length of an answer that can be generated. This is needed because the start and end predictions
            are not conditioned on one another.
        start_n_top (:obj:`int`, `optional`, defaults to 5):
            The number of top start logits too keep when searching for the :obj:`n_best_size` predictions.
        end_n_top (:obj:`int`, `optional`, defaults to 5):
            The number of top end logits too keep when searching for the :obj:`n_best_size` predictions.
        output_dir (:obj:`str`, `optional`):
            If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
            :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
            answers, are saved in `output_dir`.
        prefix (:obj:`str`, `optional`):
            If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
283
284
        log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
            ``logging`` log level (e.g., ``logging.WARNING``)
Sylvain Gugger's avatar
Sylvain Gugger committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    """
    assert len(predictions) == 5, "`predictions` should be a tuple with five elements."
    start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions

    assert len(predictions[0]) == len(
        features
    ), f"Got {len(predictions[0])} predicitions and {len(features)} features."

    # Build a map example to its corresponding features.
    example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
    features_per_example = collections.defaultdict(list)
    for i, feature in enumerate(features):
        features_per_example[example_id_to_index[feature["example_id"]]].append(i)

    # The dictionaries we have to fill.
    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict() if version_2_with_negative else None

    # Logging.
305
    logger.setLevel(log_level)
Sylvain Gugger's avatar
Sylvain Gugger committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")

    # Let's loop over all the examples!
    for example_index, example in enumerate(tqdm(examples)):
        # Those are the indices of the features associated to the current example.
        feature_indices = features_per_example[example_index]

        min_null_score = None
        prelim_predictions = []

        # Looping through all the features associated to the current example.
        for feature_index in feature_indices:
            # We grab the predictions of the model for this feature.
            start_log_prob = start_top_log_probs[feature_index]
            start_indexes = start_top_index[feature_index]
            end_log_prob = end_top_log_probs[feature_index]
            end_indexes = end_top_index[feature_index]
            feature_null_score = cls_logits[feature_index]
            # This is what will allow us to map some the positions in our logits to span of texts in the original
            # context.
            offset_mapping = features[feature_index]["offset_mapping"]
            # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
            # available in the current feature.
            token_is_max_context = features[feature_index].get("token_is_max_context", None)

            # Update minimum null prediction
            if min_null_score is None or feature_null_score < min_null_score:
                min_null_score = feature_null_score

            # Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits.
            for i in range(start_n_top):
                for j in range(end_n_top):
338
                    start_index = int(start_indexes[i])
Sylvain Gugger's avatar
Sylvain Gugger committed
339
                    j_index = i * end_n_top + j
340
                    end_index = int(end_indexes[j_index])
Sylvain Gugger's avatar
Sylvain Gugger committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
                    # Don't consider out-of-scope answers (last part of the test should be unnecessary because of the
                    # p_mask but let's not take any risk)
                    if (
                        start_index >= len(offset_mapping)
                        or end_index >= len(offset_mapping)
                        or offset_mapping[start_index] is None
                        or offset_mapping[end_index] is None
                    ):
                        continue
                    # Don't consider answers with a length negative or > max_answer_length.
                    if end_index < start_index or end_index - start_index + 1 > max_answer_length:
                        continue
                    # Don't consider answer that don't have the maximum context available (if such information is
                    # provided).
                    if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
                        continue
                    prelim_predictions.append(
                        {
                            "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
                            "score": start_log_prob[i] + end_log_prob[j_index],
                            "start_log_prob": start_log_prob[i],
                            "end_log_prob": end_log_prob[j_index],
                        }
                    )

        # Only keep the best `n_best_size` predictions.
        predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]

        # Use the offsets to gather the answer text in the original context.
        context = example["context"]
        for pred in predictions:
            offsets = pred.pop("offsets")
            pred["text"] = context[offsets[0] : offsets[1]]

        # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
        # failure.
        if len(predictions) == 0:
            predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": -2e-6})

        # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
        # the LogSumExp trick).
        scores = np.array([pred.pop("score") for pred in predictions])
        exp_scores = np.exp(scores - np.max(scores))
        probs = exp_scores / exp_scores.sum()

        # Include the probabilities in our predictions.
        for prob, pred in zip(probs, predictions):
            pred["probability"] = prob

        # Pick the best prediction and set the probability for the null answer.
        all_predictions[example["id"]] = predictions[0]["text"]
        if version_2_with_negative:
            scores_diff_json[example["id"]] = float(min_null_score)

        # Make `predictions` JSON-serializable by casting np.float back to float.
        all_nbest_json[example["id"]] = [
397
            {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
398
399
400
401
402
403
404
405
            for pred in predictions
        ]

    # If we have an output_dir, let's save all those dicts.
    if output_dir is not None:
        assert os.path.isdir(output_dir), f"{output_dir} is not a directory."

        prediction_file = os.path.join(
406
            output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
Sylvain Gugger's avatar
Sylvain Gugger committed
407
408
        )
        nbest_file = os.path.join(
409
            output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
Sylvain Gugger's avatar
Sylvain Gugger committed
410
411
412
        )
        if version_2_with_negative:
            null_odds_file = os.path.join(
413
                output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
Sylvain Gugger's avatar
Sylvain Gugger committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
            )

        print(f"Saving predictions to {prediction_file}.")
        with open(prediction_file, "w") as writer:
            writer.write(json.dumps(all_predictions, indent=4) + "\n")
        print(f"Saving nbest_preds to {nbest_file}.")
        with open(nbest_file, "w") as writer:
            writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
        if version_2_with_negative:
            print(f"Saving null_odds to {null_odds_file}.")
            with open(null_odds_file, "w") as writer:
                writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

    return all_predictions, scores_diff_json