"official/legacy/transformer/data_download.py" did not exist on "cd5e1204bd3894ae561c2ca0dc8dfbeaa8135d88"
test_modeling_llava.py 28.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Testing suite for the PyTorch Llava model."""
16

NielsRogge's avatar
NielsRogge committed
17
import copy
18
19
20
21
22
23
24
import gc
import unittest

import requests

from transformers import (
    AutoProcessor,
25
    AutoTokenizer,
26
27
28
29
30
    LlavaConfig,
    LlavaForConditionalGeneration,
    is_torch_available,
    is_vision_available,
)
31
32
33
34
35
36
37
38
from transformers.testing_utils import (
    require_bitsandbytes,
    require_torch,
    require_torch_gpu,
    require_vision,
    slow,
    torch_device,
)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor


if is_torch_available():
    import torch
else:
    is_torch_greater_or_equal_than_2_0 = False

if is_vision_available():
    from PIL import Image


class LlavaVisionText2TextModelTester:
    def __init__(
        self,
        parent,
        ignore_index=-100,
        image_token_index=0,
        projector_hidden_act="gelu",
        seq_length=7,
        vision_feature_select_strategy="default",
        vision_feature_layer=-1,
        text_config={
            "model_type": "llama",
            "seq_length": 7,
            "is_training": True,
            "use_input_mask": True,
            "use_token_type_ids": False,
            "use_labels": True,
            "vocab_size": 99,
            "hidden_size": 32,
            "num_hidden_layers": 2,
            "num_attention_heads": 4,
            "intermediate_size": 37,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "type_vocab_size": 16,
            "type_sequence_label_size": 2,
            "initializer_range": 0.02,
            "num_labels": 3,
            "num_choices": 4,
            "pad_token_id": 0,
        },
        is_training=True,
        vision_config={
            "image_size": 30,
            "patch_size": 2,
            "num_channels": 3,
            "is_training": True,
            "hidden_size": 32,
            "projection_dim": 32,
            "num_hidden_layers": 2,
            "num_attention_heads": 4,
            "intermediate_size": 37,
            "dropout": 0.1,
            "attention_dropout": 0.1,
            "initializer_range": 0.02,
        },
    ):
        self.parent = parent
        self.ignore_index = ignore_index
        self.image_token_index = image_token_index
        self.projector_hidden_act = projector_hidden_act
        self.vision_feature_select_strategy = vision_feature_select_strategy
        self.vision_feature_layer = vision_feature_layer
        self.text_config = text_config
        self.vision_config = vision_config
        self.seq_length = seq_length

        self.num_hidden_layers = text_config["num_hidden_layers"]
        self.vocab_size = text_config["vocab_size"]
        self.hidden_size = text_config["hidden_size"]
        self.num_attention_heads = text_config["num_attention_heads"]
        self.is_training = is_training

        self.batch_size = 3
        self.num_channels = 3
        self.image_size = 336
        self.encoder_seq_length = 231

    def get_config(self):
        return LlavaConfig(
            text_config=self.text_config,
            vision_config=self.vision_config,
            ignore_index=self.ignore_index,
            image_token_index=self.image_token_index,
            projector_hidden_act=self.projector_hidden_act,
            vision_feature_select_strategy=self.vision_feature_select_strategy,
            vision_feature_layer=self.vision_feature_layer,
        )

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor(
            [
                self.batch_size,
                self.vision_config["num_channels"],
                self.vision_config["image_size"],
                self.vision_config["image_size"],
            ]
        )
        config = self.get_config()

        return config, pixel_values

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
        attention_mask = input_ids.ne(1).to(torch_device)
        # we are giving 3 images let's make sure we pass in 3 image tokens
        input_ids[:, 1] = config.image_token_index
        inputs_dict = {
            "pixel_values": pixel_values,
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class LlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Model tester for `LlavaForConditionalGeneration`.
    """

    all_model_classes = (LlavaForConditionalGeneration,) if is_torch_available() else ()
    pipeline_model_mapping = {"image-to-text": LlavaForConditionalGeneration} if is_torch_available() else {}
    test_pruning = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = LlavaVisionText2TextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LlavaConfig, has_text_modality=False)

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    # Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_tokens_embeddings with config.vocab_size->config.text_config.vocab_size
    def test_resize_tokens_embeddings(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            model_vocab_size = config.text_config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            model_vocab_size = config.text_config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
            self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size)

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

            self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size)
            self.assertTrue(model.config.text_config.vocab_size, model.vocab_size)

            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

    # Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_embeddings_untied with config.vocab_size->config.text_config.vocab_size
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.text_config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

    # Copied from tests.test_modeling_common.ModelTesterMixin.test_tie_model_weights with config.vocab_size->config.text_config.vocab_size
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.text_config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

@require_torch
class LlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
    def setUp(self):
        self.processor = AutoProcessor.from_pretrained("llava-hf/bakLlava-v1-hf")

    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model = LlavaForConditionalGeneration.from_pretrained("llava-hf/bakLlava-v1-hf", load_in_4bit=True)

        prompt = "<image>\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT:"
        image_file = "https://llava-vl.github.io/static/images/view.jpg"
        raw_image = Image.open(requests.get(image_file, stream=True).raw)
        inputs = self.processor(prompt, raw_image, return_tensors="pt")

        EXPECTED_INPUT_IDS = torch.tensor([[1, 32000, 28705, 13, 11123, 28747, 1824, 460, 272, 1722,315, 1023, 347, 13831, 925, 684, 739, 315, 3251, 456,1633, 28804, 13, 4816, 8048, 12738, 28747]])  # fmt: skip
        self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))

        output = model.generate(**inputs, max_new_tokens=20)
        EXPECTED_DECODED_TEXT = "\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT: When visiting this place, there are a few things one should be cautious about. Firstly,"  # fmt: skip

        self.assertEqual(
            self.processor.decode(output[0], skip_special_tokens=True),
            EXPECTED_DECODED_TEXT,
        )

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test_llama(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model_id = "llava-hf/llava-1.5-7b-hf"

        model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", load_in_4bit=True)
        processor = AutoProcessor.from_pretrained(model_id)

401
        prompt = "USER: <image>\nWhat are the things I should be cautious about when I visit this place? ASSISTANT:"
402
403
404
405
406
        image_file = "https://llava-vl.github.io/static/images/view.jpg"
        raw_image = Image.open(requests.get(image_file, stream=True).raw)
        inputs = processor(prompt, raw_image, return_tensors="pt").to(torch_device, torch.float16)

        output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
407
        EXPECTED_DECODED_TEXT = "USER:  \nWhat are the things I should be cautious about when I visit this place? ASSISTANT: When visiting this place, which is a pier or dock extending over a body of water, there are a few things to be cautious about. First, be aware of the weather conditions, as sudden changes in weather can make the pier unsafe to walk on. Second, be mindful of the water depth and any potential hazards, such as submerged rocks or debris, that could cause accidents or injuries. Additionally, be cautious of the tides and currents, as they can change rapidly and pose a risk to swimmers or those who venture too close to the edge of the pier. Finally, be respectful of the environment and other visitors, and follow any posted rules or guidelines for the area."  # fmt: skip
408
409
410
411
412
413
414
415
416
417
418
419
420

        self.assertEqual(
            processor.decode(output[0], skip_special_tokens=True),
            EXPECTED_DECODED_TEXT,
        )

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test_llama_batched(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model_id = "llava-hf/llava-1.5-7b-hf"

        model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", load_in_4bit=True)
421
        processor = AutoProcessor.from_pretrained(model_id)
422
423

        prompts = [
424
425
            "USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me? ASSISTANT:",
            "USER: <image>\nWhat is this? ASSISTANT:",
426
427
428
429
        ]
        image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
        image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)

430
        inputs = processor(prompts, images=[image1, image2], return_tensors="pt", padding=True)
431
432
433

        output = model.generate(**inputs, max_new_tokens=20)

434
        EXPECTED_DECODED_TEXT = ['USER:  \nWhat are the things I should be cautious about when I visit this place? What should I bring with me? ASSISTANT: When visiting this place, which is a pier or dock extending over a body of water, you', 'USER:  \nWhat is this? ASSISTANT: The image features two cats lying down on a pink couch. One cat is located on']  # fmt: skip
435
436
437
438
439
440
441
442
443
444
445

        self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test_batch(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model = LlavaForConditionalGeneration.from_pretrained("llava-hf/bakLlava-v1-hf", load_in_4bit=True)
        # The first batch is longer in terms of text, but only has 1 image. The second batch will be padded in text, but the first will be padded because images take more space!.
        prompts = [
            "USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:",
446
            "USER: <image>\nWhat is this?\nASSISTANT:",
447
448
449
450
        ]
        image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
        image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)

451
        inputs = self.processor(prompts, images=[image1, image2], return_tensors="pt", padding=True)
452
453
454

        output = model.generate(**inputs, max_new_tokens=20)

455
        EXPECTED_DECODED_TEXT = ['USER:  \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, there are a few things to be cautious about and items to bring along', 'USER:  \nWhat is this?\nASSISTANT: Cats']  # fmt: skip
456
        self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test_llama_batched_regression(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model_id = "llava-hf/llava-1.5-7b-hf"

        # Multi-image & multi-prompt (e.g. 3 images and 2 prompts now fails with SDPA, this tests if "eager" works as before)
        model = LlavaForConditionalGeneration.from_pretrained(
            "llava-hf/llava-1.5-7b-hf", load_in_4bit=True, attn_implementation="eager"
        )
        processor = AutoProcessor.from_pretrained(model_id, pad_token="<pad>")

        prompts = [
            "USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:",
            "USER: <image>\nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER: <image>\nAnd this?\nASSISTANT:",
        ]
        image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
        image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)

        inputs = processor(prompts, images=[image1, image2, image1], return_tensors="pt", padding=True)

        output = model.generate(**inputs, max_new_tokens=20)

481
        EXPECTED_DECODED_TEXT = ['USER:  \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, which appears to be a dock or pier extending over a body of water', 'USER:  \nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER:  \nAnd this?\nASSISTANT: A cat sleeping on a bed.']  # fmt: skip
482
483
484

        self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    @slow
    @require_torch
    @require_vision
    def test_batched_generation(self):
        model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf").to(torch_device)

        processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")

        prompt1 = "<image>\n<image>\nUSER: What's the the difference of two images?\nASSISTANT:"
        prompt2 = "<image>\nUSER: Describe the image.\nASSISTANT:"
        prompt3 = "<image>\nUSER: Describe the image.\nASSISTANT:"
        url1 = "https://images.unsplash.com/photo-1552053831-71594a27632d?q=80&w=3062&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
        url2 = "https://images.unsplash.com/photo-1617258683320-61900b281ced?q=80&w=3087&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
        image1 = Image.open(requests.get(url1, stream=True).raw)
        image2 = Image.open(requests.get(url2, stream=True).raw)

        inputs = processor(
            text=[prompt1, prompt2, prompt3],
            images=[image1, image2, image1, image2],
            return_tensors="pt",
            padding=True,
        ).to(torch_device)

        model = model.eval()

        EXPECTED_OUTPUT = [
            "\n \nUSER: What's the the difference of two images?\nASSISTANT: In the two images, the primary difference is the presence of a small dog holding a flower in one",
            "\nUSER: Describe the image.\nASSISTANT: The image features a small, fluffy dog sitting on a sidewalk. The dog is holding",
            "\nUSER: Describe the image.\nASSISTANT: The image features a lone, adult llama standing on a grassy hill. The llama",
        ]

        generate_ids = model.generate(**inputs, max_new_tokens=20)
        outputs = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        self.assertEqual(outputs, EXPECTED_OUTPUT)

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    @slow
    @require_bitsandbytes
    def test_llava_index_error_bug(self):
        # This is a reproducer of https://github.com/huggingface/transformers/pull/28032 and makes sure it does not happen anymore
        # Please refer to that PR, or specifically https://github.com/huggingface/transformers/pull/28032#issuecomment-1860650043 for
        # more details
        model_id = "llava-hf/llava-1.5-7b-hf"
        model = LlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)

        processor = AutoProcessor.from_pretrained(model_id)

        # Simulate a super long prompt
        user_prompt = "Describe the image:?\n" * 200
        prompt = f"USER: <image>\n{user_prompt}ASSISTANT:"
        image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"

        raw_image = Image.open(requests.get(image_file, stream=True).raw)
        inputs = processor(prompt, raw_image, return_tensors="pt").to(torch_device, torch.float16)

        # Make sure that `generate` works
        _ = model.generate(**inputs, max_new_tokens=20)
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

    @slow
    @require_torch_gpu
    def test_llava_merge_inputs_error_bug(self):
        # This is a reproducer of https://github.com/huggingface/transformers/pull/28333 and makes sure it does not happen anymore
        model_id = "llava-hf/llava-1.5-7b-hf"
        model = LlavaForConditionalGeneration.from_pretrained(
            model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True
        ).to(torch_device)

        # Simulate some user inputs
        pixel_values = torch.randn(
            (2, 3, 336, 336),
            dtype=torch.float,
            device=torch_device,
        )
        input_ids = torch.tensor(
            [
                [32001, 32001, 1, 15043, 7084, 32000, 29871, 13, 7900],
                [1, 15043, 7084, 29901, 29871, 32000, 29871, 13, 7900],
            ],
            dtype=torch.long,
            device=torch_device,
        )
        attention_mask = torch.tensor(
            [[0, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]],
            dtype=torch.long,
            device=torch_device,
        )

        # Make sure that the loss is properly computed
        loss = model(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            labels=input_ids,
        ).loss
        loss.backward()
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

    def test_tokenizer_integration(self):
        slow_tokenizer = AutoTokenizer.from_pretrained("liuhaotian/llava-v1.6-34b", use_fast=False)
        slow_tokenizer.add_tokens("<image>", True)

        fast_tokenizer = AutoTokenizer.from_pretrained(
            "liuhaotian/llava-v1.6-34b",
            bos_token="<|startoftext|>",
            eos_token="<|endoftext|>",
            from_slow=True,
            legacy=False,
        )
        fast_tokenizer.add_tokens("<image>", True)

        prompt = "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
594
595
596
        EXPECTED_OUTPUT = ['<|im_start|>', 'system', '\n', 'Answer', '鈻乼he', '鈻乹uestions', '.', '<|im_end|>', '<|im_start|>', 'user', '\n', '<image>', '\n', 'What', '鈻乮s', '鈻乻hown', '鈻乮n', '鈻乼his', '鈻乮mage', '?', '<|im_end|>', '<|im_start|>', 'ass', 'istant', '\n']  # fmt: skip
        self.assertEqual(slow_tokenizer.tokenize(prompt), EXPECTED_OUTPUT)
        self.assertEqual(fast_tokenizer.tokenize(prompt), EXPECTED_OUTPUT)